Linear Algebra #2

A has to be invertible

There shroudn't be multiple ways of getting to b from columns of A.

No way to

Any Ax

• Any
$$A\bar{x}$$

• Matrix is Singular $\begin{bmatrix} c_1 & c_2 & c_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

• Matrix is non-invertible

• Determinant (A) = 0

Rank(A) = No. of linearly independent columns (or rows) of that matrix $\begin{bmatrix}
4 & c_1 & c_3 \\
1 & 1 & 1
\end{bmatrix}$ where we dep. if $W_1 C_1 + W_2 C_2 + W_3 C_3 = 0$ $W_1 C_1 + W_2 C_2 = -W_3 C_3$ $\frac{W_1}{W_2} C_1 + \frac{W_2}{W_3} C_2 = C_3$ means \overline{C}_3 can be expressed as $[W_1]$

means C_3 can be expressed as $\begin{bmatrix}
93 & 60 & 9 \\
155 + 40 + 15 \\
6 & 20 & 6 \\
3 + 20 & 3
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$ $\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$ $\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

Nwu space:
$$\{\bar{x} : A\bar{x} = 0\}$$
 = space of an non-zero vectors
N(A) that can take a matrix A to 0

Shape of NWM space:

$$A = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} \begin{bmatrix} x_{4} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A^{T} \rightarrow \begin{bmatrix} c_{11} & c_{24} & c_{31} \\ c_{12} & c_{22} & c_{32} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{3} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$M = 3$$

$$C(A) \quad N(A)$$

$$\boxed{2} \quad \overrightarrow{P} \quad C(A^{T}) \quad N(A^{T})$$

$$N(A^T)$$
 and $N(A)$.

$$N(A^T)$$
 and $N(A)$ \perp $\begin{bmatrix} c_{11} \\ c_{12} \end{bmatrix} \cdot \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = 0$?

Two vectors is and V are orthogonal (perp.) if [. V = 0 $\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$ $U^{\mathsf{T}}V = 0$ $u_3 \int_{V_3}^{V_1} = u_1 v_1 + u_2 v_2 + u_3 v_3$

 $\begin{bmatrix} c_{11} \\ c_{21} \\ c_{33} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$

→ How large is N(A^T) ?

$$A^{T} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$j \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

False

[o]

- Null space of AT contains K

True

T/F? N(A) does not exist True T/F? N(AT) contains K True T/F? N(A) does not exist False

False

False because \bar{k} False because k L C(A) also. $A^T k = 0$ Now how many dimensions in N(AT)?

AT = [1 15 7 3 22 8] [22] = 0

Thinh of Tim an 2D space covered by 6 vectors Now how many dimensions in N(AT) ? $C(A) = \mathbb{R}^2 \quad N(A^T) = \mathbb{R}^4 \quad C(A^T) = \mathbb{R}^2$

Think of $N(A^T)$ as: the gap between the potential space the columns could cover and the space it covered.

Think of N(A) as the space of redundancy or inefficiency of the columns.

- Add m-dimensional eals. one by one to fin out as much space

