ECE/CS 434 : Lin Alg. : Lecture 1
$\rightarrow$ Vector Spaces:
Notion of space :


Possible to reach any point in the $\mathbb{R}^{N}$ space by combining $N$ nou-collinew vectors w/ apt. weights
Informally: everything you can make by combining a giver set of building blocks and rules,

(-) Column space: All possible vectors mat can be formed by a weighted combination of $A^{\prime}$ s
$C(A)$ column vectors.

$$
A \bar{x}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{c}
1 \\
c_{1} \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
c_{2} \\
1
\end{array}\right]+\cdots x_{3}\left[\begin{array}{c}
1 \\
c_{3} \\
1
\end{array}\right]
$$


sheet of paper?


$$
\begin{aligned}
& A \bar{x}=\bar{b}_{c} \\
& \bar{b} \in \mathbb{R}^{2} \\
& c(A) \in \mathbb{R}^{2}
\end{aligned}
$$

If $A \bar{x}=\bar{b}$, then col. space is the union of all possible $\bar{b}$ vectors
$\Theta$ Row space: All possible vectors mat caw be formed by a weighted combination of A's row vectors

$$
\begin{aligned}
& \left.\quad \begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \\
& \text { vector } \bar{x}^{\top} \\
& =\quad \underbrace{\left[\begin{array}{r}
-r_{1}- \\
-r_{2}- \\
-r_{3}-
\end{array}\right]}_{\text {Matrix } A}=\begin{array}{l}
x_{1}\left[-r_{1}-\right] \\
+ \\
+x_{2}\left[-r_{2}-\right] \\
+x_{3}\left[-r_{3}-\right]
\end{array}]
\end{aligned}
$$

$$
c_{1}=\left[\begin{array}{l}
\text { Example: } A=\left[\begin{array}{ll}
1 \\
1 \\
3
\end{array}\right] \quad c_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{array}\right] \Rightarrow \begin{aligned}
& 2 \\
& 3
\end{aligned} 2 \begin{aligned}
& r_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
& r_{2}=\left[\begin{array}{ll}
3 & 2
\end{array}\right]
\end{aligned}
$$

$\bar{X}^{\top} A=\bar{b}^{\top} \in$ row space of $A=$ union of all feasible $\bar{b}^{\top}$ vectors.


Question: Is $R(A)$ and $C(A)$ identical for

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

$$
\mathcal{L}\{r, \rightarrow\}
$$

$\sqrt{\pi}\left\{a \cdot \pi \quad R(A)=\mathbb{R}^{2}\right.$



$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right] \uparrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$\Theta$ Vector space: set of au vectors $W$ that satisfies 3 conditions
(1) if $\bar{u} \in W, \bar{v} \in W$, then $\bar{u}+\bar{v} \in W$
(2) if $\bar{u} \in W$, and $c \cdot \bar{u} \in W, c=$ constant

Question: space or not?
(1) 2D plane? Yes
(2) One quadrant? No
(3) Line $x=y$
(4) Zero vector


$\Theta$ Popular matrix equation: $A \bar{x}=b$

$$
\left[\begin{array}{cccc}
1 & 1 & & 1 \\
c_{1} & c_{2} & \cdots & 1 \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{w}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{w}
\end{array}\right]
$$


$\rightarrow$ How do you solve this?

- Somehow make A

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
b \\
1
\end{array}\right]} \\
& {[x]=\left[\begin{array}{l}
1 \\
b
\end{array}\right]}
\end{aligned}
$$

- Ganss-Jordan : $\bar{x}=A^{-1} \bar{b}$
- How do you get $A^{-1}$ ?

$$
\left[A \left\lvert\, \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right.\right] \Rightarrow \underbrace{\left[\begin{array}{lll|l}
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots
\end{array}\right]}_{A^{-1}}
$$

