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EM: Expectation Maximization

🎯 Goal 
- We have a generative process as follows:      
- Here,  is observed and  is latent 
- Estimate  that maximizes the likelihood of observed data.

Look at an example to better understand the problem

🟢 Coin toss example: 
- Someone has  coins with biases     …  the person picks a coin   at random and records the outcome of the toss as  , 
where  is either  or   
-  such identical and independent coin toss results are published:  
- Your goal is to estimate  that maximizes the likelihood of the published observations, i.e.,    

- In fact, I would like you to also estimate  in the process?

Why is this not just a maximum likelihood estimation problem?

🟢 Consider the term     

- But how do you compute this individual term? 
- You cannot because you don’t know which coin this  came from. 
- One possibility is to pretend  came from coin    … and compute the likelihood. 
- But then it becomes a huge — exponentially growing — combinatorics problem since there are  possible assignments for  
tosses with  coins. 
- This is crazy.

🟢 But observe that if you can select some possible assignments … and associate probabilities to them … you can compute the 
expectation of the likelihood. 
- In other words, since you don’t know how to compute the likelihood function, you are setting up the average likelihood over multiple 
possible assignments. 
- Now, optimize that average likelihood. 
- That’s what EM wants to go towards.

The insight in plain language
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🟢 1. Write out what you need, i.e.,  … and this breaks into: , i.e., the likelihood and prior. 
2. If you pretend to know   …  then you can compute the likelihood as a function of  … and the prior 
can be assumed as equal or some other distribution from domain knowledge. 
3. You can simply perform MLE by differentiating w.r.t.   
 
4. But you don’t know  … so what do you do? 
5. What if you pretend to know the distribution for ?  Then, you can sample some  , plug that  into the likelihood and 
prior, and since picking  is  associated with some probability, you multiply that  with  
6. If you do this for each , you are essentially taking the expectation of  over .    
7. In other words,  can be viewed as the function of the random variable, , and  is the distribution on  … and 
now, the equation   forms the expectation of the function of the RV. 
8. Since  is the likelihood, we are actually computing the expectation of the likelihood.   
 
9. Now, how do you get this distribution for ? 
10. Why not compute the posterior distribution for  based on the observed data and some initial guess of  
11. This won’t be right initially … but it can improve the likelihood  which can then improve the posterior … which can then improve 

 … until convergence. 

12. Convergence happens when   

Set up the likelihood function

🟢 -  

- Since   does not influence the choice of  …    … which is the prior for picking .  Let’s denote this prior with 
 

 
- The log likelihood is hence:      
 
- Now,  can take any one value between   …  
- so let’s model that by summing over all  possible values but picking only one term from the sum using a DELTA function → nice 
trick 
 

-           
 
- Here,         when   … otherwise,  
 
- Importantly,  is the only variable we don’t know  above. 

Expectation step → create the posterior distribution

🟢 - The posterior is:         

 
-  Using Bayes rule, we have:           

 

                                                                                                                

 
- Now, we can shorten this by picking the correct  based on , so we can write this equation as: 
 

                                                                                                                

 
- Let’s call this posterior distribution on variable  as    … we have 

Maximization step → take the expectation of the likelihood over the posterior on 
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🟢 - Recall the log likelihood:       … where  is the only missing 
variable. 
 
- Also, we have the posterior on    … and that posterior does not have any missing variable … so it’s a complete distribution. 
- This means we can get a probability value for  
 
- So we can compute the expectation of the log likelihood … where the expectation is computed over the posterior distribution of  , 
i.e.,  
 

                         
 
- Observe that  is essentially  probabilities values, one for each  
 
- Hence, the expectation can be written as the expectation of only the  functions, since that’s the only one with  in it 
 

                                                                    
 
- Now, consider this term:                                                  
 
- Inside the double summation, take the first term,  and . This first term’s expectation can be written as:  
                                                                     

 
                                                                      
                                                                      

 
- See how the expectation for the first term reduced to only a single probability … since the delta functions zero-forced all other 
probabilities. 
- Now, across all the terms of the double summation (which is a  matrix), we have the following summation:

 
- Now we can rewrite the expectation of the whole log likelihood function as: 
 

                                            

🟢 The final step: let’s maximize the expected likelihood function.  
 
- Observe we need to maximize the first portion w.r.t.       … and the second portion w.r.t. 

- At the end, we want  vectors:     and prior probabilities, 
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🟢 Let’s optimize the first term: 
 
- Note that  only occurs in the   column of the matrix above, so when we optimize for  we sum over all data points  
 

                            

 
- This is a standard MLE problem, except that each  term is weighted with a probability value.  But differentiation will solve this.

🟢 Let’s now optimize the second term: 
 

- We basically need to find  that maximizes    
 
- Note that we can group by column and write this as:     
 
- And since all terms are negative (  of a probability is negative), we can optimize each term individually while satisfying the 
constraints that: 

                                                                     and      
 
- So finding the optimal  is equivalent to:    
 

                                          s.t.  ,  

 
- This is a straight application of Lagrange multipliers → and we get the optimal  as the average of the  coefficients:  
 
                              

The final iteration

🟢 Putting everything together: 
 
- E step:    The posterior     is a function of a single data point   … all the  calculated till now  … and all the  
estimated till now 
 
- M step:    The expected log-likelihood needs to be calculated …  
                  where the log-likelihood depends on all data samples    … all the  calculated till now   …   and all the  
estimated till now 
                  and the expectation over the posterior also needs  
 
- So, start the  step with  an initial guess on      … and compute  
 
- Then, compute     using   and  
 
- Then iterate as:      
 
- Terminate when   

Tutorial by Dahua Lin (MIT): here

θk kth θ ,k i = 1 : n

=θk̂    q (k) log p(x ∣θ )
θ

arg max ∑i=1
n

i i k

log

[π ,  π ,  ... π ]1 2 K    q (k)  log π∑i=1
n ∑k=1

K
i k

  q (1) log π    +∑i=1
n

i 1   q (2) log π   ...   +∑i=1
n

i 2   q (K) log π∑i=1
n

i K

log

  π =∑k=1
K

k 1 π ≥k 0,   ∀k = 1, 2, ...,K

π1:K

=π̂1:K      q (k) log π   
π

arg max ∑i=1
n

i k   π =∑k=1
K

k 1 π ≥k 0,   ∀k = 1, 2, ...,K

πk q (k)i

=π̂k q (k)n
1 ∑i=1

n
i

q (z )i i xi θ1:K π1:K

x1:n θ1:K π1:K

q (z )i i

E0 [θ ,  π ]1:K
0

1:K
0 q (z )i

0
i

[θ ,  π ]1:K
1

1:K
1 q (z )i

0
i [θ ,  π ]1:K

0
1:K
0

[θ ,  π ]   →   q    →   [θ ,  π ]   →   q   ...   [θ ,  π ]   →   q1:K
1

1:K
1

i
1

1:K
2

1:K
2

i
2

1:K
t

1:K
t

i
t+1

∣θ −t θ ∣ ≤t−1 ϵ

https://courses.csail.mit.edu/6.867/wiki/images/b/b5/Em_tutorial.pdf

