EM: Expectation Maximization

Goal

- We have a generative process as follows: $\quad \theta \rightarrow Z \rightarrow X$
- Here, X is observed and Z is latent
- Estimate θ that maximizes the likelihood of observed data.

V Look at an example to better understand the problem

Coin toss example:

- Someone has K coins with biases $\theta_{1: K} \quad \ldots$ the person picks a coin z_{i} at random and records the outcome of the toss as x_{i}, where x_{i} is either H or T
- N such identical and independent coin toss results are published: $\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$
- Your goal is to estimate $\theta_{1: k}$ that maximizes the likelihood of the published observations, i.e., $\underset{\theta}{\operatorname{argmax}} p(X \mid \theta)$
- In fact, I would like you to also estimate $Z=\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ in the process?

Vhy is this not just a maximum likelihood estimation problem?

Consider the term $\operatorname{argmax} p\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1: K}\right)=\underset{\theta}{\operatorname{argmax}} \prod_{i} p\left(x_{i} \mid \theta_{1: K}\right)$

- But how do you compute this individual term?
- You cannot because you don't know which coin this x_{i} came from.
- One possibility is to pretend x_{i} came from coin $\theta_{j} \quad \ldots$ and compute the likelihood.
- But then it becomes a huge - exponentially growing - combinatorics problem since there are K^{n} possible assignments for n tosses with K coins.
- This is crazy.

But observe that if you can select some possible assignments ... and associate probabilities to them ... you can compute the expectation of the likelihood.

- In other words, since you don't know how to compute the likelihood function, you are setting up the average likelihood over multiple possible assignments.
- Now, optimize that average likelihood.
- That's what EM wants to go towards.

V The insight in plain language

1. Write out what you need, i.e., $L=p(X, Z \mid \theta) \ldots$ and this breaks into: $L=p(X \mid Z, \theta) p(Z \mid \theta)$, i.e., the likelihood and prior. 2. If you pretend to know $Z=k, k \in[1,2, \ldots, K] \ldots$ then you can compute the likelihood as a function of $(Z, \theta) \ldots$ and the prior can be assumed as equal or some other distribution from domain knowledge.
2. You can simply perform MLE by differentiating w.r.t. θ
3. But you don't know Z... so what do you do?
4. What if you pretend to know the distribution for Z ? Then, you can sample some $Z=z_{k}$, plug that z_{k} into the likelihood and prior, and since picking z_{k} is associated with some probability, you multiply that L with $p\left(Z=z_{k}\right)$
5. If you do this for each z_{k}, you are essentially taking the expectation of L over Z.
6. In other words, L can be viewed as the function of the random variable, $g(Z)$, and $p\left(Z=z_{k}\right)$ is the distribution on $Z \ldots$ and now, the equation $\sum g(Z) p\left(Z=z_{k}\right)$ forms the expectation of the function of the RV.
7. Since $g(Z)$ is the likelihood, we are actually computing the expectation of the likelihood.
8. Now, how do you get this distribution for Z ?
9. Why not compute the posterior distribution for Z based on the observed data and some initial guess of $\theta_{1: K}$
10. This won't be right initially ... but it can improve the likelihood L which can then improve the posterior ... which can then improve $L \ldots$ until convergence.
11. Convergence happens when $\hat{\theta}(t+1)-\hat{\theta(t)} \leq \epsilon$

- Set up the likelihood function
$-L=p(X, Z \mid \theta)=p(X \mid Z, \theta) p(Z \mid \theta)=p\left(x_{1}, x_{2}, \ldots, x_{n} \mid z_{1}, z_{2}, \ldots, z_{n} ; \theta_{1: K}\right) p\left(z_{1}, z_{2}, \ldots, z_{n} \mid \theta_{1: K}\right)=\prod_{i} p\left(x_{i} \mid z_{i} ; \theta_{i}\right) p\left(z_{i} \mid \theta_{i}\right)$ - Since θ_{i} does not influence the choice of $z_{i} \ldots p\left(z_{i} \mid \theta_{i}\right)=p\left(z_{i}\right) \ldots$ which is the prior for picking z_{i}. Let's denote this prior with $\pi_{z_{i}}=p\left(z_{i}\right)$
- The \log likelihood is hence: $\quad \log p\left(X, Z \mid \theta_{1: K}\right)=\sum_{i=1}^{n}\left\{\log p\left(x_{i} \mid \theta_{z_{i}}\right)+\log \pi_{z_{i}}\right\}$
- Now, z_{i} can take any one value between $[1: K] \ldots$
- so let's model that by summing over all K possible values but picking only one term from the sum using a DELTA function \rightarrow nice trick
- $\quad \log p\left(X, Z \mid \theta_{1: K}\right)=\sum_{i=1}^{n} \sum_{k=1}^{K} \delta_{k}\left(z_{i}\right)\left\{\log p\left(x_{i} \mid \theta_{k}\right)+\log \pi_{k}\right\}$
- Here, $\quad \delta_{k}\left(z_{i}\right)=1 \quad$ when $z_{i}=k \ldots$ otherwise, $\delta_{k}\left(z_{i}\right)=0$
- Importantly, z_{i} is the only variable we don't know above.

V Expectation step \rightarrow create the posterior distribution

- The posterior is: $\quad p(Z \mid X ; \theta)=\prod_{i} p\left(z_{i} \mid x_{i} ; \theta\right)$
- Using Bayes rule, we have: $\quad p(Z \mid X ; \theta)=\prod_{i} p\left(z_{i} \mid x_{i} ; \theta\right)=\prod_{i}\left\{p\left(x_{i} \mid z_{i} ; \theta\right) p\left(z_{i} ; \theta\right) / p\left(x_{i}\right)\right\}$

$$
=\prod_{i}\left\{p\left(x_{i} \mid z_{i} ; \theta\right) p\left(z_{i} ; \theta\right) / \sum_{i=1}^{K} p\left(x_{i} \mid z_{i} ; \theta\right) p\left(z_{i} ; \theta\right)\right\}
$$

- Now, we can shorten this by picking the correct θ based on z_{i}, so we can write this equation as:

$$
=\prod_{i}\left\{p\left(x_{i} \mid \theta_{z_{i}}\right) \pi_{z_{i}} / \sum_{k=1}^{K} p\left(x_{i} \mid \theta_{k}\right) \pi_{k}\right\}
$$

- Let's call this posterior distribution on variable Z as $q(Z) \ldots$ we have $q(Z)=\prod_{i} q_{i}\left(z_{i}\right)$

V Maximization step \rightarrow take the expectation of the likelihood over the posterior on Z

- Recall the \log likelinood: $\log p\left(X, Z \mid \theta_{1: K}\right)=\sum_{i=1}^{n} \sum_{k=1}^{K} \delta_{k}\left(z_{i}\right)\left\{\log p\left(x_{i} \mid \theta_{k}\right)+\log \pi_{k}\right\} \quad \ldots$ where z_{i} is the only missing variable.
- Also, we have the posterior on $z_{i} \quad \ldots$ and that posterior does not have any missing variable ... so it's a complete distribution.
- This means we can get a probability value for $z_{i}=1, z_{i}=2, \ldots z_{i}=K$
- So we can compute the expectation of the log likelihood \ldots where the expectation is computed over the posterior distribution of z_{i}, i.e., $q_{i}\left(z_{i}\right)$

$$
E_{q_{i}}\left[\log p\left(X, Z \mid \theta_{1: K}\right)\right]=\sum_{i=1}^{n} \sum_{k=1}^{K} \quad E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\left\{\log p\left(x_{i} \mid \theta_{k}\right)+\log \pi_{k}\right\}\right]
$$

- Observe that $q_{i}\left(z_{i}\right)$ is essentially K probabilities values, one for each $z_{i}, i \in[1, K]$
- Hence, the expectation can be written as the expectation of only the δ functions, since that's the only one with z_{i} in it

$$
=\sum_{i=1}^{n} \sum_{k=1}^{K} \quad E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\right]\left\{\log p\left(x_{i} \mid \theta_{k}\right)+\log \pi_{k}\right\}
$$

- Now, consider this term:

$$
E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\right]
$$

- Inside the double summation, take the first term, $i=1$ and $k=1$. This first term's expectation can be written as:

$$
K) \delta_{1}\left(z_{1}=K\right)
$$

$$
E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\right]=p\left(z_{1}=1\right) \delta_{1}\left(z_{1}=1\right)+p\left(z_{1}=2\right) \delta_{1}\left(z_{1}=2\right)+\ldots+p\left(z_{1}=\right.
$$

$$
\begin{aligned}
& E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\right]=p\left(z_{1}=1\right) 1+p\left(z_{1}=2\right) 0+\ldots+p\left(z_{1}=K\right) 0 \\
& E_{q_{i}}\left[\delta_{k}\left(z_{i}\right)\right]=p\left(z_{1}=1\right)
\end{aligned}
$$

- See how the expectation for the first term reduced to only a single probability ... since the delta functions zero-forced all other probabilities.
- Now, across all the terms of the double summation (which is a $n \times K$ matrix), we have the following summation:

	$k=1$	$k=2$		$K=K$
に1	$p\left(z_{1}=1\right)\left\{f_{\substack{i=1 \\ k=1}}\right\}+$	$p\left(z_{1}=2\right)\left\{\begin{array}{l}f_{i=1}=2 \\ k=2\end{array}\right\}+$	- .	$+p\left(z_{1}=k\right)\left\{\begin{array}{c}f_{i=1} \\ k=k\end{array}\right\}$
$i=2$	$+P\left(z_{2}=1\right)\left\{f_{\substack{i=2 \\ k=1}}\right\}+$	$p\left(z_{2}=2\right)\left\{\begin{array}{l}f_{i=2} \\ k=2\end{array}\right\}+$. .	$+p\left(z_{2}=k\right)\left\{\begin{array}{c} f_{i=2} \\ k=k \end{array}\right\}$
\vdots	:			
$i=n$	$+P\left(z_{n}=1\right)\left\{f_{i=n}^{i=1} k\right\}+$	$p\left(z_{n}=2\right)\left\{\begin{array}{c} f_{i=n} \\ k=2 \end{array}\right\}+$		$+p\left(z_{n}=k\right)\left\{\begin{array}{c} f_{i=n} \\ k=k \end{array}\right\}$

- Now we can rewrite the expectation of the whole log likelihood function as:

$$
E_{q_{i}}\left[\log p\left(X, Z \mid \theta_{1: K}\right)\right]=\sum_{i=1}^{n} \sum_{k=1}^{K} \quad q_{i}(k)\left\{\log p\left(x_{i} \mid \theta_{k}\right)+\log \pi_{k}\right\}
$$

The final step: let's maximize the expected likelihood function.

- Observe we need to maximize the first portion w.r.t. $\theta_{k}, k \in[1, K] \quad \ldots$ and the second portion w.r.t. π_{k} - At the end, we want 2 vectors: $\hat{\theta_{1: K}}$ and prior probabilities, $\pi_{1: K}$

Let's optimize the first term:

- Note that θ_{k} only occurs in the $k^{t h}$ column of the matrix above, so when we optimize for θ_{k}, we sum over all data points $i=1: n$

$$
\hat{\theta_{k}}=\underset{\theta}{\arg \max } \sum_{i=1}^{n} q_{i}(k) \log p\left(x_{i} \mid \theta_{k}\right)
$$

- This is a standard MLE problem, except that each \log term is weighted with a probability value. But differentiation will solve this.

Let's now optimize the second term:

- We basically need to find $\left[\pi_{1}, \pi_{2}, \ldots \pi_{K}\right]$ that maximizes $\sum_{i=1}^{n} \sum_{k=1}^{K} q_{i}(k) \log \pi_{k}$
- Note that we can group by column and write this as: $\quad \sum_{i=1}^{n} q_{i}(1) \log \pi_{1}+\sum_{i=1}^{n} q_{i}(2) \log \pi_{2} \ldots+\sum_{i=1}^{n} q_{i}(K) \log \pi_{K}$
- And since all terms are negative (log of a probability is negative), we can optimize each term individually while satisfying the constraints that:

$$
\sum_{k=1}^{K} \pi_{k}=1 \quad \text { and } \quad \pi_{k} \geq 0, \quad \forall k=1,2, \ldots, K
$$

- So finding the optimal $\pi_{1: K}$ is equivalent to:

$$
\hat{\pi}_{1: K}=\underset{\pi}{\arg \max } \quad \sum_{i=1}^{n} q_{i}(k) \log \pi_{k} \quad \text { s.t. } \sum_{k=1}^{K} \pi_{k}=1, \pi_{k} \geq 0, \forall k=1,2, \ldots, K
$$

- This is a straight application of Lagrange multipliers \rightarrow and we get the optimal π_{k} as the average of the $q_{i}(k)$ coefficients:

$$
\hat{\pi}_{k}=\frac{1}{n} \sum_{i=1}^{n} q_{i}(k)
$$

$\boldsymbol{\nabla}$ The final iteration

Putting everything together:

```
- E step: The posterior \(q_{i}\left(z_{i}\right)\) is a function of a single data point \(x_{i} \ldots\) all the \(\theta_{1: K}\) calculated till now \(\ldots\) and all the \(\pi_{1: K}\)
estimated till now
- M step: The expected log-likelihood needs to be calculated ...
    where the log-likelihood depends on all data samples \(x_{1: n} \ldots\) all the \(\theta_{1: K}\) calculated till now \(\ldots\) and all the \(\pi_{1: K}\)
estimated till now
    and the expectation over the posterior also needs \(q_{i}\left(z_{i}\right)\)
- So, start the \(E^{0}\) step with an initial guess on \(\left[\theta_{1: K}^{0}, \pi_{1: K}^{0}\right] \quad \ldots\) and compute \(q_{i}^{0}\left(z_{i}\right)\)
- Then, compute \(\left[\theta_{1: K}^{1}, \pi_{1: K}^{1}\right]\) using \(q_{i}^{0}\left(z_{i}\right)\) and \(\left[\theta_{1: K}^{0}, \pi_{1: K}^{0}\right]\)
- Then iterate as: \(\left[\theta_{1: K}^{1}, \pi_{1: K}^{1}\right] \rightarrow q_{i}^{1} \rightarrow\left[\theta_{1: K}^{2}, \pi_{1: K}^{2}\right] \rightarrow q_{i}^{2} \ldots\left[\theta_{1: K}^{t}, \pi_{1: K}^{t}\right] \rightarrow q_{i}^{t+1}\)
- Terminate when \(\left|\theta^{t}-\theta^{t-1}\right| \leq \epsilon\)
```

