

Source separation preliminaries

Source separation: The general problem statement

Source separation preliminaries

Source separation: The general problem statement

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]}_{\text {Mixing matrix }}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

Unknown mixing matrix, unknown source signals \rightarrow heavily under-determined

Source separation preliminaries

Source separation: The general problem statement

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]}_{\text {Mixing matrix }}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

Source separation preliminaries

Source separation: The general problem statement

Hard to separate the sources even visually

When can we solve SS?

Let's make some simplifications: Mixing matrix is AoA (or steering) matrix

$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\mid & \mid \\ \vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\ \mid & \mid\end{array}\right]}_{\text {Steering matrix } \mathbf{A}}\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right]$

When can we solve SS?

$$
X=A . S+N
$$

Let's make some simplifications

$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\mid & \mid \\ \vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\ \mid & \mid\end{array}\right]}_{\text {Steering matrix } \mathrm{A}}\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right]$

1) Matrix A is known

- Problem is determined, easy to solve
- With noise, apply Least Squares

When can we solve SS?

$$
X=A . S+N
$$

Let's make some simplifications
3) A and S both unknown, but s1 and s2 are independent

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\mid & \mid \\
\vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\
\mid & \mid
\end{array}\right]}_{\text {Steering matrix } \mathrm{A}}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

When can we solve SS?

$X=A . S+N$

Let's make some simplifications

$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\mid & \mid \\ \vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\ \mid & \mid\end{array}\right]}_{\text {Steering matrix } \mathrm{A}}\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right]$
3) A and S both unknown, but s1 and s2 are independent - Independent component analysis (ICA)

Step 1 Model covariance of x as a function of A's SVD $E\left[x x^{T}\right]=(A s)(A s)^{T}=A s s^{T} A^{T}=\left(U \Sigma V^{T}\right) s s^{T}\left(V \Sigma^{T} U^{T}\right)$ $=U \Sigma^{2} U^{T}$

Step 2 Compute Covariance of x , match with model

$$
E\left[x x^{T}\right]=E D E^{T}=U \Sigma^{2} U^{T}
$$

$$
\text { Note: We now know } \quad U=E \text { and } \Sigma=D^{1 / 2} \text { is the only unknown }
$$

Step 3 Write out source estimate in terms of V

$$
\hat{s}=A^{-1} x=\left(U \Sigma V^{T}\right)^{-1} x=\left(V \Sigma^{-1} U^{T}\right) x=\left(V D^{-1 / 2} E^{T}\right) x
$$

Step 4 How can we find V? Exploit higher order statistics

$$
V^{*}=\underset{V}{\operatorname{argmax}} K L_{-} \operatorname{Div}\left(\left(V D^{-1 / 2} E^{T}\right) x\right)
$$

When can we solve SS?

$$
X=A . S+N
$$

Let's make some simplifications

3) A and S both unknown, but s1 and s2 are independent - Independent component analysis (ICA)
4) Independent vector analysis (IVA)
5) Matrix factorization methods
6) Matrix completion methods

Source = Speech

$$
X=A . S+N
$$

Let's make some simplifications
When the source signal is speech ...

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\mid & \vec{a}_{\theta_{1}} \\
\vec{a}_{\theta_{2}} \\
\mid & \mid
\end{array}\right]}_{\text {Steering matrix } \mathrm{A}}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

Source $=$ Speech

$$
X=A . S+N
$$

Let's make some simplifications

$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\mid & \mid \\ \vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\ \mid & \mid\end{array}\right]}_{\text {Steering matrix } \mathrm{A}}\left[\begin{array}{l}s_{1} \\ s_{2}\end{array}\right]$

When the source signal is speech, exploit TF-disjointness

