Kalman Filter

- Problem Set-up:

- Reality:

$$
\begin{align*}
& x_{k}=A x_{k-1}+w_{p} \\
& y_{k}=H x_{k}+n_{m} \tag{2}
\end{align*}
$$

-(1) Process model.
Measurement model.

State estimator: Combine process \& measwement

$$
\hat{x}_{k}=x_{k}^{p}+k_{k}\left(y_{k}-\hat{y}_{k}\right)
$$

from process model
from measurement model

If I have x_{K-1}, thew I can unodel both x_{K}^{P} and $\hat{y}_{K}=H x_{K}^{P}$

What do we heed to do this ?
Estimate $K_{k} \longrightarrow$ time index
\rightarrow If process noise $n_{p}=0$,
K_{k} should be 0
if measurement noise $n_{m}=0$
K_{k} should be H^{-1}
because, $\quad \hat{x}_{k}=x_{k}^{p}+H^{-1}\left(H x_{k}+w_{m}-H x_{k}^{p}\right)$

$$
=x_{k}+H^{-1} n_{m} \cong x_{k}
$$

Main intuition: Seems like possible to use K_{k} as a knob that combines the process and measurement.

If I turn K_{k} the wrong way, the \hat{x}_{k} prediction should diverge from the true x_{k} which will also manifest in gap in true and modeled measurement. $\left(y_{k}-\hat{y}_{k}\right)$

434: Kalman Filters

1. Start with an initial \hat{x}_{0}
2. That gives us a process based estimate x_{1}^{p}
3. If this was correct, then I expect the measurement y_{1} to match with my modeled measurement $H x_{1}^{p}$ If it does not match, then the error is composed of both process error and measurement error.
4. My goal is to modulate the process estimate x_{1}^{p} with some linear function of this error

This gives me an estimate of the state variable as: $\quad \hat{x}_{1}=x_{1}^{p}+K_{1}\left(y_{1}-H x_{1}^{p}\right)$
5. What should K_{1} be?

- Well, design it such that it minimizes the MSE of state estimate error, defined as : $e_{1}=x_{1}-\hat{x}_{1}$
- So we want to minimize $E\left[e_{1}^{2}\right]$

6. Let's model $e_{1} \ldots e_{1}=x_{1}-\left(x_{1}^{p}+K_{1}\left(y_{1}-H x_{1}^{p}\right)\right)=x_{1}-\left(x_{1}^{p}+K_{1}\left(H x_{1}+n_{m}-H x_{1}^{p}\right)\right)$

$$
\begin{aligned}
& =\left(1-K_{1} H\right) x_{1}-\left(1-K_{1} H\right) x_{1}^{p}+K_{1} n_{m} \\
& =\left(1-K_{1} H\right) \underbrace{\left(x_{1}-x_{1}^{p}\right)+K_{1} n_{m} e_{\mathbf{l}}=\left(1-K_{1} H\right) e_{1}^{p}+K_{1} n_{m}}_{p_{\text {Process }}} \\
& \text { ts } \rightarrow \text { the process error } e_{1}^{p} \text { and the measurement error } n_{m}
\end{aligned} \boldsymbol{\chi}_{\mathbf{l}}-\boldsymbol{\chi}_{\mathbf{l}}^{p}=e_{\mathbf{1}}^{p}
$$

Not surprising that this error has both un-modeled components \rightarrow the process error e_{1}^{p} and the measurement error n_{m}
$\left(k, n_{m}\right)\left(k, n_{m}\right)^{T}$

- This expectation then becomes: $\quad P_{1}=E\left[e_{1} e_{1}^{T}\right]=\left(1-K_{1} H\right)\left(x_{1}-x_{1}^{p}\right)\left(x_{1}-x_{1}^{p}\right)^{T}\left(1-K_{1} H\right)^{T}+K_{1} n_{m} n_{m}^{T} K_{1}^{T}$

Cross terms aren't present because e_{1}^{p} and n_{m} are uncorrelated. Why? Because the process and measurement errors are independent Thus,

$$
E\left[e_{1} e_{1}^{T}\right]=\left(1-K_{1} H\right) P_{1}^{p}\left(1-K_{1} H\right)^{T}+K_{1} R_{m} K_{1}^{T}
$$

Not surprising that this error covariance has the process error covariance P_{1}^{p} and the measurement error covariance R_{m}
8. Find K_{1} that minimizes this covariance, i.e., $\quad \underset{K}{\arg \min }\left(1-K_{1} H\right) P_{1}^{p}\left(1-K_{1} H\right)^{T}+K_{1} R_{m} K_{1}^{T}$

- This gives:

$$
K_{1}=\frac{P_{1}^{p} H^{T}}{\left(H P_{1}^{p} H^{T}+R_{m}\right)}
$$

[See equations 11.21 to 11.24 in this article for
minimization]
9. Perhaps we can assume we know covariance for the measurement error $R_{m} \quad \ldots$ but we don't have P_{1}^{p}

Since $\quad K_{1}=f\left(P_{1}^{p}\right) \quad$.. we need P_{1}^{p}
10. Ok, so let's define $P_{1}^{p}=E\left[e_{1}^{p} e_{1}^{p T}\right] \quad$ where $e_{1}^{p}=x_{1}-x_{1}^{p} \quad=A x_{0}+n_{p}-A \hat{x}_{0} \quad=A e_{0}+n_{p}$

So, $P_{1}^{p}=E\left[\left(A e_{0}+n_{p}\right)\left(A e_{0}+n_{p}\right)^{T}\right]=A P_{0} A^{T}+R_{p} \quad \ldots$ again, assuming e_{0} and n_{p} are uncorrelated.
$E\left[A e_{0} e_{\theta}^{\top} A^{\top}+n_{p} \bar{n}_{p}^{\top}+A e_{0} \bar{n}_{p}^{\top}+n_{p} e_{0}^{\top} A^{\top}\right]$
So we have $P_{1}^{p}=A P_{0} A^{T}+R_{p}$

$$
E\left[A e_{0}\left(A e_{0}\right)^{\top}\right]=A E\left[e_{0} e_{0}^{\top}\right] A^{\top}
$$

Of course, this P_{1}^{p} depends on the previous P_{0}
11. Now, let's resolve this P_{0} from last step \ldots which is the same as resolving P_{1} since it would be used in the next step.

$$
P_{1}=f\left(K_{1}, P_{1}^{p}\right) \quad \ldots \text { so we have resolved both } K_{1} \text { and } P_{1} \text { now }
$$

In fact, plugging K_{1} into $P_{1} \quad \ldots$ and then simplifying, we get: $\quad P_{1}=\left(1-K_{1} H\right) P_{1}^{p}$
v Derivation

$$
\begin{aligned}
& P_{1}=\left(1-k_{1} H\right) P_{1}^{P}\left(1-K_{1} H\right)^{\top}+k_{1} R_{m} k_{1}^{\top} \\
&=\left(P_{1}^{P}-k_{1} H P_{1}^{P}\right)\left(1-H^{\top} k_{1}^{\top}\right) \\
&= P_{1}^{P}-P_{1}^{P} H^{\top} k_{1}^{\top}-k_{1} H P_{1}^{P}+k_{1}\left(H P_{1}^{P} H^{\top}+R_{m}\right) K_{1}^{\top} \\
& \text { substitute } K_{1}=\frac{P_{1}^{P} H^{\top}}{H P_{1}^{P} H^{\top}+R_{m}}=\frac{P_{1}^{P} H^{\top}}{D} \\
&= P_{1}^{P}-P_{1}^{P} H^{\top}\left(\frac{P_{1}^{P} H^{\top}}{D}\right)^{\top}-\left(\frac{P_{1}^{P} H^{\top}}{D}\right)^{H P_{1}^{P}}+\frac{P_{1}^{P} H^{\top} \cdot H P_{1}^{P}}{D} \\
&= P_{1}^{P}-P_{1}^{P} H^{\top}\left(H P_{1}^{P} H^{\top}+R_{m}\right)^{-1} H P_{1}^{P} \\
&= P_{1}^{P}-K_{1} H P_{1}^{P}=\left(1-K_{1} H\right) P_{1}^{P} \\
& \text { Tuns, } \quad P_{1}=\left(1-K_{1} H\right) P_{1}^{P}
\end{aligned}
$$

Questions

