Probabilistic Graphical Models

- Edges convey progression (egg., time)

(7) Probabistic graphical models \rightarrow each mode is wow a random variable (Rv)

- Let's write the modeled state at time t_{k} as S_{k}

So $\longrightarrow S_{1}$

- Transition i.... one state to another has probabilities. Let's model an matrix

(4) Modeling short/ long term dependencies
- should (Sk+1 only depend ow S_{k} ?
or perhaps s_{k+1} also man depend ow s_{k-1}
or even all $S_{1: K}$ since the whole build up matters

- Answer depends ow the application
A. $\quad s_{k+1}=$ Final SAT score
$S_{k}=K^{\text {th }}$ practice SAT score
$S_{k-1}=(k-1)^{\text {th }}$ practice SAT score...
B. $\quad S_{k+1}=$ Next location of a flying bee
$S_{K}=$ current location
$S_{k-1}=$ Previous location
(4) Mathematically speaking: Conditional Independence

$$
\begin{aligned}
& P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& \equiv P(X \mid Y, Z)=P(X \mid Y) \equiv P\left(S_{K+1} \mid S_{K}, S_{K-1}\right) \\
&=P\left(S_{K+1} \mid S_{K}\right)
\end{aligned}
$$

- Please prove this if s_{k} is conditionally independent of s_{k-1}
- Physical meaning of conditional independence? $P($ height, vocabulary $) ? P($ height $) P$ (vocab)
- Any otter example?
(5) Markovian or Mon-Markovian ?
- Whew $P\left(S_{k+1}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right)$ only a function of S_{k},
ie., the bee is memoryless, hence Markov process.
- When calculating $P\left(S_{k+1}=\left[\begin{array}{l}0 \\ 0 \\ \vdots\end{array}\right]\right) \begin{aligned} & \text { depends on } \\ & \text { multiple prior } \\ & \text { states }\end{aligned}$ states, then won -mar Koviam.

$$
\text { ie., } P\left(S A T_{k+1} \mid{ }^{S A T_{k}}, \text { SAT }_{k-1}, \ldots S A T_{k-r}\right) \neq P\left(S A T_{k+1} \mid S A T_{k}\right)
$$

- How do you know Markovian or not?
\rightarrow Experience/intrition
\rightarrow Data driven calculations (offline)
(6) Examples: Memvoryless or not?
(a) $P\left(\right.$ destination $\left.\left\lvert\, \begin{array}{l}\text { wow at } \\ \text { zurich } \\ \text { airport }\end{array}\right., \begin{array}{c}\text { departure } \\ \text { airport }\end{array}\right)$
(b) $P\left(\right.$ job interview \mid GPA $_{8}$, GPA $_{7} \ldots$ CGPA $\left._{1}\right)$
$\stackrel{?}{=} P\left(\right.$ job interview $\left.\mid C G P A_{B}\right)$?

$$
\stackrel{?}{=} P\left(\begin{array}{c|c}
\text { Ball. } & \text { Ban } \\
\text { bloc. in } & \text { cos. } \\
\text { goal } & t+1
\end{array}\right)
$$

(d)

$$
\begin{aligned}
& (h) l ? l \\
& \left(s_{1} s_{2} s_{3} s_{4} s_{5}\right. \\
& p\left(s_{5} \mid s_{1} s_{2} s_{3} s_{4}\right) \stackrel{?}{=}\left(s_{5} \mid s_{4}\right)
\end{aligned}
$$

(7) Next state prediction (Markov)

Need to estimate Transition Probability Matrix

This TPM is often a fin of a model.

A rocket moving as a f: of fuel injection and air drag

A person typing in English / Other <language and the next character has some TPM as a function of that language.

- Predicting or tracking \longrightarrow Predict

Predict S_{k+1} from $s_{1: k}$
Can you track the rocket or predict the typed sentence?
(8) Hidden States and Emission

- Tracking from the process alone may be difficult in some applications... impossible in others
\rightarrow Becanse wo way to correct wrong \hat{s}_{k}
- Some measurements needed.

- Measurements (also called emissions) help in "resetting" or "recalibrating" error
- Measurements heed mot be accurate \rightarrow i.e., also a random variable

- Measurements meed not be of S_{K}. \rightarrow i.e., can be $m_{k}=A S_{k}+n$ noise Hence, S_{k} is hidden. Sone emission or leakage gives us m_{k}. Now predict s_{k}

Θ Formmating the state transition diagram :
Let S_{k} denote the state of the subject at time k

$$
\longrightarrow S_{k} \text { is a random variable, i.e., } S_{k}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{r}
\end{array}\right] \forall k \in[1, n]
$$

The human's walking motion is captured in

And the measurement and motion model is available for each state

Θ Key Question: Where is/was the human at time t_{k} ?

$$
P\left(s_{k} \mid m_{1: k}\right) \text { or } P\left(s_{k} \mid m_{1}: n\right)
$$

Is this: Posterior or likelihood?

Do you have an intritive feel for $P\left(s_{k} \mid m_{1: n}\right)$?
If not, fan back ow visualizing them as vectors

$$
\begin{aligned}
& P\left(s_{k}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{r}
\end{array}\right] \left\lvert\, m_{1}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{r}
\end{array}\right] \quad m_{2}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{r}
\end{array}\right] \ldots m_{n}=\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{r}
\end{array}\right]\right.\right) \\
= & \frac{P\left(s_{k}, m_{1: n}\right)}{P\left(m_{1: n}\right)}=
\end{aligned}
$$

Θ From this joint distribution (in numerator) you want to know which value of $S_{K}=\left[\begin{array}{c}L_{1} \\ L_{2} \\ \vdots \\ L_{2}\end{array}\right]$ has the max probability given the $m_{1: n}$ measurements you already have.
(s) The denominator is same for all $S_{k}=\left[\begin{array}{c}L_{1} \\ L_{2} \\ \vdots \\ L_{r}\end{array}\right]$, so only numerator matiers. joint distribution.
Θ Turn this posterior to likelilwods

Likelihood ... and that is not hard because it's the sensor's measurement quality
$\Theta \alpha$ Let's do This mathematically now.
Θ Let's stant with a basic result for $P(\underbrace{S_{1: n} \mid m_{1}: n}_{\text {trajectory given measwerwents }})$

$$
\begin{aligned}
& P\left(S_{1: n} \left\lvert\, w_{1: n}=\frac{P\left(S_{1: n}, m_{1: n}\right)}{P\left(m_{1: n}\right)} \propto P\left(S_{1: n}, m_{1: n}\right)\right.\right. \\
& \text { Chain } \\
& P\left(s_{1: n}, m_{1: n}\right) \stackrel{\text { rule }}{=} P\left(m_{n} \mid m_{1: n-1} s_{1: n}\right) P\left(m_{n-1} \mid m_{1: n-2}, s_{1: n}\right) \ldots \\
& \operatorname{Markov}\left(\ldots P\left(m_{1} \mid s_{1}: n\right) P\left(s_{n} \mid s_{1: n-1}\right) \ldots P\left(s_{2} \mid s_{1}\right) P\left(s_{1}\right)\right. \\
& =P\left(m_{n} \mid s_{n}\right) P\left(m_{n-1} \mid s_{n-1}\right) \ldots P\left(m_{1} \mid s_{1}\right) P\left(s_{n} \mid s_{1: n-1}\right) \\
& \ldots P\left(s_{2} \mid s_{1}\right) P\left(s_{1}\right)
\end{aligned}
$$

$$
P\left(s_{1: n}, m_{1: n}\right)=P\left(m_{1} \mid s_{1}\right) P\left(s_{1}\right) \prod_{i=2}^{n} P\left(m_{i} \mid s_{i}\right) P\left(s_{i} \mid s_{i-1}\right)
$$

Θ Now we want $P\left(S_{k} \mid m_{1: n}\right)$

$$
\begin{aligned}
P\left(s_{k} \mid m_{1: n}\right) \propto & P\left(s_{k}, m_{1: n}\right)=P\left(s_{k}, m_{1: k}, m_{k+1: n}\right) \\
= & P\left(m_{k+1: n} \mid s_{k}, m_{1: k}\right) P\left(s_{k}, m_{1: k}\right) \\
= & P\left(m_{k+1}: n \mid s_{k}\right) P\left(s_{k} \mid m_{1: k}\right) P\left(m_{1: k}\right) \\
= & P\left(s_{k} \mid m_{1: k}\right) \cdot P\left(m_{k+1: n} \mid s_{k}\right) \\
\downarrow & \downarrow \\
& \quad \begin{aligned}
& \\
& \quad \text { Forward (online) } \quad \text { Backward (offline) }
\end{aligned}
\end{aligned}
$$

Probability mat murder suspect is at $S_{k}=$ green st . given $k=4$ recent surveillance Camera measurements of main street \rightarrow wright street \rightarrow 6^{m} street

Questions

Prereqs
(1) Conditional prob. $P(X \mid Y, Z)=P(X \mid Y)$

$$
\begin{aligned}
P(X \mid Y, Z) & =P(X, Z \mid Y) \cdot \frac{P(Y)}{P(Y, Z)} \\
& =P(X \mid Y) P(Z \mid Y) \cdot \frac{P(Y)}{P(Z \mid Y) \cdot P(Y)} \\
& =P(X \mid Y)
\end{aligned}
$$

(2) Conditional distribution

sot $P\left(\begin{array}{c|c}\text { true } \\ \text { location } & \left.\begin{array}{c}\text { measured } \\ \text { wcation }\end{array}\right)=\text { ? Not gaussian }\end{array}\right)$
because $P($ true $/$ measured $)=\frac{P(m / t) \cdot P(t)}{P(m)}$

(3)

$$
\begin{aligned}
& \operatorname{Var}(x+Y) \\
& \operatorname{Var}(k x) \\
& \operatorname{Var}(k X+Y)
\end{aligned}
$$

Assume: $P\left(s_{k} \mid s_{k-1} s_{k-2}\right)=P\left(s_{k} \mid s_{k-1}\right)$ \& $P\left(m_{k} \mid s_{1: k}, m_{1: k-1}\right)=P\left(m_{k} \mid s_{k}\right)$

$$
\text { Also } \operatorname{van}(x+k)
$$

