SVD Proofs:

Let's find this V, I, U assuming they always exist. Assuming AV = UI, let's calculate what U, I, V are. Prove that V is the eigenbasis of AT (row space of A) $A = U \Sigma_i V^T$ $A^{T} = V \Sigma_{1}^{T} U^{T} = V \Sigma_{1} U^{T}$ $\therefore A^{T}A = (V \Xi U^{T})(U \Xi V^{T})$ $= V \Sigma u^{T} u \Sigma V^{T}$ $= V \Sigma^{2} V^{T} = V \Sigma^{2} V^{-1}$ or $A^{T}A.V = V\Sigma^{V}$: V is the eigenvector matrix of AAT and [I, Iz ...] T are The Jai Jaz of matrix AAT. Amxr⇒ATA ∈ NXN ∴ V = NXN

Prove that U is the eigenbasis of A (col. space of A).

Now, how to find
$$U$$
?
 $AA^{T} = (U\Sigma_{V}V^{T})(V\Sigma_{U}U^{T}) = U\Sigma_{V}V^{T}V\Sigma_{U}U^{T}$
 $= U\Sigma_{U}^{T}U^{T} = U\Sigma_{U}^{T}U^{-1}$
 $\Rightarrow AA^{T}U = U\Sigma_{U}^{T}$.
 G Eigenvector of AA^{T} .
 $U = M \times M$

Prove that U and V are both orthogonal

Prove that matrix A always has the SVD decomposition

$$\overrightarrow{AA} \cdot V = \cancel{A} \cdot V$$
 \longrightarrow always true, \overrightarrow{AB} and \overrightarrow{V} is \overrightarrow{L} since
 $\overrightarrow{AA} \quad \overrightarrow{AS}$ is PSD.
 $\overrightarrow{A} \quad \left(\begin{array}{c} \overrightarrow{AV} \\ \overrightarrow{Va} \end{array} \right) = \begin{array}{c} \cancel{A} \cdot V \\ \overrightarrow{Va} \end{array}$

Now
$$AA^{T}(AV) = A(\lambda V) = \lambda(AV) \longrightarrow This is the eigenvector eigenvector eigenvector eigenvector eigenvector eigenvector.$$

: The matrix
$$\begin{pmatrix} AV\\ \sqrt{X} \end{pmatrix}$$
 must be orthonormal, since AAT is PSD.

Let
$$U = AV$$
 where U is orthonormal. $AV = U\sqrt{a}$

•

$$A = U J \overline{X} V^{-1} = U \overline{L} V^{T} //$$

PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA : Principal Component Analysis

PCA's Goal: Which basis B will make the data uncorrelated?

Aus: Let's represent data in another orthrogonal basis B.

When data d; is represented in this new basis B, it becomes, say, Z; Note: If B is a Fourier basis, then Z; is the fourier transform.

 $D = \begin{bmatrix} w_1 & x_2 \\ y_1 & y_2 & \dots & y_n \\ z_1 & z_2 & & z_n \end{bmatrix} \equiv \begin{bmatrix} d_1 & d_2 & \dots & d_n \\ 1 & 1 & 1 \end{bmatrix}$ $So_{1} \begin{bmatrix} 1 & 1 \\ y_1 & y_2 & \dots & y_n \\ y_1 & y_2 & \dots & y_n \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 & u_2 & u_n \\ v_1 & v_2 & \dots & v_n \\ w_1 & w_2 & w_n \end{bmatrix} = \begin{bmatrix} d_1 & d_2 & \dots & d_n \\ 1 & 1 & 1 \end{bmatrix}$

B.Z = D

Now, to be uncorrelated, covaniance of data (in new basis) should be a diagonal matrix (because uncorrelated means cov(x,r) = 0) Now, data covariance (in new basis) = ZZ^{T} $ZZ^{T} = \begin{bmatrix} w_{1} & w_{2} & \cdots & w_{n} \\ w_{1} & w_{2} & \cdots & w_{n} \end{bmatrix} \begin{bmatrix} w_{1} & v_{1} & w_{1} \\ w_{2} & v_{2} & w_{2} \\ \vdots \\ u_{n} & v_{n} & w_{n} \end{bmatrix} = \Lambda$ $(B^{T}D)(B^{-1}D)^{T} = \Lambda$ $B^{T}D \cdot D^{T}(B^{-1})^{T} = \Lambda$ $D \cdot D^{T}(B^{-1})^{T} = B\Lambda$ $D \cdot D^{T}(B^{T})^{T} = B\Lambda$ $D \cdot D^{T}(B^{T})^{T} = B\Lambda$ $D \cdot D^{T}(B^{T})^{T} = B\Lambda$ $D \cdot D^{T}B = B\Lambda$ $\therefore B$ is eigenvector

Thus, the eigen vectors of the data covariance matrix gives us the desired basis vectors to decorrelate the data. Now, to compress data D, basically remove the last K columns of B and last K vows of Z, then take the product of the matrices B'Z' = D'. This D' is the compressed matrix.

 \odot NOTE: $\nabla^2 f_{x^*} \geq 0$ is a necessary but not sufficient condition

Example:
$$f(x) = x^{2}$$

 $\nabla f_{x} = 3x^{2} = 0 \implies x^{2} = 0$
Bud is x^{2} a minima or maxima or mailiner ?
 $\nabla^{2}f(x^{*}) = 6x |_{x=0} = 0$
Bud observe that $2x^{*} = 0$ is not maxima or maxima.
 f_{x}
 $x^{*} = 0$ is NOT maxima or minima.
 f_{x}
 $x^{*} = 0$ is NOT maxima or minima.
 $\nabla^{2}f_{x} > 0$ is conficient condition
 $\nabla^{2}f_{x} > 0$ is conficient condition
 $\nabla^{2}f_{x} > 0$ is conficient condition
Well, if f_{x} is a convex f^{*} , then local minima is global minima.
 ∇
 ∇ What's a convex f^{*} ?
 ∇ Functions that have an more any more convex $f(x_{1})$ and $f(x_{2})$
 $always the privits $f(x_{1})$ and $f(x_{2})$
 $d$$

 χ_2

Mathematically:
$$\ll f(\infty) + (1-\alpha)f(\infty) \geqslant f(\alpha x_1 + (1-\alpha)x_2), \ll e[0,1]$$

How to test for convexity? $\nabla^2 f_x \ge 0 \iff \text{Lowex ftrs.}$
(a) Summary: Given $f(x)$,
if $\nabla^2 f(x) \ge 0$ (i.e., Positive semi-def Hessian)
them $f(\infty)$ is convex ft:
Thus $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives GLOBAL MINIMA.
(c) But here is the bad news:
 $f(\infty) = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = \infty$.
More $\pi_0 \to \infty$, $\to \infty = \infty$.
 $\pi = \infty$.
More $\pi_0 \to \infty$, $\to \infty = \infty$.
 $\pi = \infty$.
More $\pi_0 \to \infty$, $\to \infty = \infty$.
 $\pi = \infty$.
More $\pi_0 \to \infty$, $\to \infty = \infty$.
 $\pi = \infty$.
 $f(\infty) = 0$ gives $f(\infty)$.
 $f(\infty) = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = 0$ gives $\pi = \infty$.
 $f(\infty) = 0$ gives $\pi = 0$ gives $\pi = 0$ gives $\pi = \infty$.
 $f(\infty) =$

$$\frac{f(\vec{z})}{r_{k+1}} = \frac{\pi}{r_k} + \frac{\pi}{r_k}$$
(3) What \vec{v} directions will take us wast downorm?
Answer: The directions of $-\nabla f(\mathbf{x}_k)$.
Proof: Taylor's 1% order expansion says
 $f(y) = f(x) + \nabla f(x)(y-x) + o(1y-x)$
 $\hat{v} = f(x_k + \epsilon \vec{v}) = f(x_k) + \epsilon \cdot \nabla f(x_k) \mathbf{v}_k + o(\epsilon)$
 $\dim = f(\pi_k + \epsilon \vec{v}) - f(\mathbf{x}_k) = \nabla f(\mathbf{x}_k) \mathbf{v}_k$
 $\epsilon \rightarrow 0$
Rate of change of $f(x)$ along directions \mathbf{v}_k
So what is the max and min value of $\nabla f(\pi_k)^T \mathbf{v}_k$?
 $\nabla f(\mathbf{x}_k)$ $\sum_{v \neq v} \sum_{i=1}^{v} \sum_{i=1}^{$

Questions :

(a) Why does step size a need to be small ?

(b) Can you drow a case where SGD may not converge if & is not small enough? (c) Does SGD take the shortest path from 20, to 20*?