SVD Proofs:
Wets find this $v, \Sigma, u$ assuming they always exist.
Assuming $A V=U \Sigma_{1}$, let's calculate what $U, \Sigma_{1}, V$ are.
Prove that $V$ is the eigenbasis of $A^{\top}$ (row space of $A$ )

$$
\begin{aligned}
A= & U \Sigma_{1} V^{\top} \\
A^{\top}= & V \Sigma_{1}^{\top} U^{\top}=V \Sigma_{1} U^{\top} \\
\therefore \quad A^{\top} A & =\left(V \Sigma_{1} u^{\top}\right)\left(U \Sigma_{1} V^{\top}\right) \\
& =V \sum_{1} u^{\top} U V^{\top} \\
& =V \Sigma_{1}^{2} V^{\top}=V \sum_{1}^{V} V^{-1}
\end{aligned}
$$

or $A^{\top} A . V=V \Sigma^{V}$
$\therefore \quad V$ is the eigen vector matrix of $A A^{\top}$
and $\left[\sigma_{1}, \sigma_{2} \ldots\right]^{\top}$ are The $\sqrt{\lambda_{1}} \sqrt{\lambda_{2}} \ldots$ of matrix $A A^{\top}$.

$$
A_{m \times n} \Rightarrow A^{\top} A \in n \times n \quad \therefore \quad V \equiv n \times w
$$

Prove that $U$ is the eigenbasis of $A$ (col. space of $A$ ).
Now, how to find $u$ ?

$$
\begin{aligned}
& A A^{\top}=\left(u \Sigma v^{\top}\right)\left(v \Sigma u^{\top}\right)=u \Sigma v^{\top} v \Sigma u^{\top} \\
&=u \Sigma^{2} u^{\top}=u \Sigma^{2} u^{-1} \\
& \Rightarrow A A^{\top} u=u \Sigma_{1}^{2}
\end{aligned}
$$

$\rightarrow$ Eigenvector of $A A^{\top}$.

$$
u=m \times m
$$

Prove that $U$ and $V$ are both orthogonal.
4. Prove that matrix A always has the SUD decomposition
$A^{\top} A . V=\lambda . V \quad$ always true $\lambda \geq 0$ and $V$ is $\perp$ since

$$
A^{\top}\left(\frac{A V}{\sqrt{\lambda}}\right)=\frac{\lambda}{\sqrt{\lambda}} \cdot V
$$

Now $A A^{\top}\left(\frac{A V}{\sqrt{\lambda}}\right)=A\left(\frac{\lambda}{\sqrt{\lambda}} V\right)=\lambda\left(\frac{A V}{\sqrt{\lambda}}\right)$
$\rightarrow$ This is the eigenvector eq n for $A A^{\top}$.
$\therefore$ The matrix $\left(\frac{A V}{\sqrt{\lambda}}\right)$ must be orthonormal, since AAT is
Let $u=\frac{A V}{\sqrt{\lambda}}$ where $u$ is orthonormal. $\therefore A V=u \sqrt{\lambda}$

$$
\therefore \quad A=U \sqrt{\lambda} V^{-1}=U \sum_{1} V^{\top} / /
$$

PRINCIPAL COMPONENT ANALYSIS (FCA)

PCA : Principal Component Analysis


$$
\begin{aligned}
& \text { (2) Matrix } A=\left[\begin{array}{llll}
x_{1} & x_{2} & & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n} \\
z_{1} & z_{2} & & z_{n}
\end{array}\right] \\
& \text { covariance (A) }=A A^{\top}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{n} \\
y_{1} & y_{2} & y_{n} \\
z_{1} & z_{2} & z_{n}
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\vdots & & \\
x_{n} & y_{n} & z_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\operatorname{von}(x) & \operatorname{cov}(x y) & \operatorname{cov}(x z) \\
\operatorname{Cov}(y x) & \operatorname{vor}(y) & \operatorname{cov}(y) \\
\operatorname{Cov}(z x) & \operatorname{cov}((z) & \operatorname{Van}(z)
\end{array}\right]
\end{aligned}
$$

PCA's Goal: Which basis B will make the data uncorrelated?
Aus: let's represent data in another orinogonal basis $B$.
(3)



Note, when $B$ is ortwogoual it can be easily made ortwonormal.
(4) When data $d_{i}$ is represented in this
new basis $B$, it becomes, say, $z_{i}$
Note: If $B$ is a Fourier basis, then $z_{i}$ is the fourier transform.

$$
D=\left[\begin{array}{llll}
x_{1} & x_{2} & & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n} \\
z_{1} & z_{2} & & z_{n}
\end{array}\right] \equiv\left[\begin{array}{cccc}
\dot{d}_{1}^{\prime} & d_{2} & d_{n}^{\prime} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So, $\left[\begin{array}{ccc}1 & 1 & 1 \\ u & v & w \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{cccc}u_{1} & u_{2} & & u_{n} \\ v_{1} & v_{2} & \ldots & v_{n} \\ w_{1} & w_{2} & & w_{n}\end{array}\right]=\left[\begin{array}{ccc}d_{1} & 1 & \\ d_{2} & d_{2} & \ldots \\ 1 & 1 & d_{n} \\ & 1 & \end{array}\right]$

$$
B \cdot Z=D
$$

Now, to be uncorrelated, covariance of data (in new basis) should be a diagonal matrix (because uncorrelated means $\operatorname{cov}(x, y)=0)$
(5)

Now, data covariance (in new basis) $=z z^{\top}$

$$
\begin{aligned}
& z z^{\top}=\left[\begin{array}{cccc}
u_{1} & u_{2} & u_{n} \\
w_{1} & v_{2} & \cdots & v_{n} \\
1 & w_{2} & & w_{n}
\end{array}\right]\left[\begin{array}{ccc}
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2} \\
\vdots & \\
u_{n} & v_{n} & w_{n}
\end{array}\right]=\Lambda \\
& \left(B^{-1} D\right)\left(B^{-1} D\right)^{\top}=\Lambda \\
& B^{-1} D \cdot D^{\top}\left(B^{-1}\right)^{\top}=\Lambda \\
& D \cdot D^{\top}\left(B^{-1}\right)^{\top}=B \Lambda \\
& D \cdot D^{\top}\left(B^{\top}\right)^{\top}=B \Lambda \\
& D D^{\top} B=B \Lambda
\end{aligned}
$$

$\therefore B$ is eigenvector
Thus, the eigen vectors of the data covariance matrix gives us the desired basis vectors to decorrelate the data.

Now, to compress data $D$, basically remove the last $K$ columns of $B$ and last' $k$ vows of $Z$, then take the product of the matrices $B^{\prime} Z^{\prime}=D^{\prime}$
This $D^{\prime}$ is the compressed matrix.

434: Optimization Basics
$\Theta$
 $\frac{\partial f(x)}{\partial x}=0$ gives $u s$ local extremum How do you know maxima or minima?

$$
\left.\frac{\partial^{2} f(x)}{\partial x^{2}}\right|_{x=x^{*}}>0 \quad \text { i.e. } \quad \frac{\partial^{2} f\left(x^{*}\right)}{\partial x^{2}}>0
$$

$\Theta$ Functions in higher dimensions (ie, whee r $\bar{x}$ is vector) $\Rightarrow f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \quad \nabla f(x) \equiv \nabla f_{x}=\left[\begin{array}{c}
\partial f / \partial x_{1} \\
\partial f / \partial x_{2} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right] \\
& \nabla_{\text {wabla or del }} \quad \equiv \\
& \nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & & \\
\frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
\end{aligned}
$$

caved the "Hessian" matrix
$\Theta$ How do we find, local


$$
\begin{aligned}
& \nabla f_{x}=0 \quad \Rightarrow \text { gives extremums } \\
& \underbrace{\nabla^{2} f_{x^{*}}>0}_{\text {Hessian is a positive definite matrix. }} \quad \Rightarrow \text { indicates minima }
\end{aligned}
$$ Matrix $A$ is P.D. When all $\lambda_{i}(A)>0$ or $x^{\top} A x>0, \forall x$ Positive semi definite (PSD) when $\lambda_{i}(A) \geqslant 0, x^{\top} A x \geqslant 0, \forall x$

$\Theta$ NAte: $\nabla^{2} f_{x^{*}} \geqslant 0$ is a necessary but not sufficient condition
Example: $\quad f(x)=x^{3}$

$$
\nabla f_{x}=3 x^{2}=0 \quad \Rightarrow x^{*}=0
$$

But is $x^{*}$ a minima or maxima or neither ?

$$
\nabla^{2} f\left(x^{*}\right)=\left.6 x\right|_{x=0}=0
$$

But observe that $x^{*}=0$ is neitiver a minima or maxima.

$x^{*}=0$ is NOT maxima or minima.
called "stationary" points
$\nabla^{2} f_{x}>0$ is sufficient condition
$\leftrightarrow \nabla F_{x}=0$ and $\nabla^{2} f_{x}>0$ gives us local minima.
But how can ? get global minima?


Well, if $f_{x}$ is a convex $f^{2}:$, then local minima is global minima.

$\Theta$ What's a convex fou ?
$\leftrightarrows$ functions that have an upward curvature everywhere.

non -convex

Intuitively: The straight line joining any two points $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$
always lies above $f(y)$, where $y \in\left[x_{1}, x_{2}\right]$


Mathematically: $\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \geqslant f\left(\alpha x_{1}+(1-\alpha) x_{2}\right), \alpha \in[0,1]$


How to test for convexity? $\quad \nabla^{2} f_{x} \geqslant 0 \Leftrightarrow$ convex fris.
$\Theta$ Summary: Given $f(x)$,
if $\nabla^{2} f(x) \geqslant 0$ (i.e., Positive semi-def Hessian) then $f(x)$ is comex $f$ ?.
Thus $f(x)=0$ gives GLOBAL MINIMA.
$\Theta$ But here is the bad news:
Even if $f(x)$ is convex, in many cases, its difficult to solve for $\nabla f(x)=0$.
Example: $f(x)=e^{x}+x^{2}$
$\rightarrow$ closed form solution difficult

We need to solve such functions iteratively
$\longrightarrow$ Motivates gradient descent
$\leftrightarrow$ Main idea: We want to start at some $x=x_{0}$ Move $x_{0} \rightarrow x_{1} \rightarrow x_{2} \cdots \cdot \rightarrow x^{*}$
s.t. $x^{*}$ is local/global uninima of $f(x)$

This implies: $\quad f\left(x_{k+1}\right)<f\left(x_{k}\right)$
so frow $x_{k}$, we should go along a direction that decreases the value of $f\left(x_{k}\right)$.
say this direction is $\vec{v}_{k}$

$$
\therefore \quad \vec{x}_{k+1}=\vec{x}_{k}+\vec{v}_{k}
$$

$\Theta$ What $\vec{v}$ direction will take us most downward? Answer: The direction of $-\nabla f\left(x_{k}\right)$

Proof: Taybr's list order expansion says


$$
f(y)=f(x)+\nabla f(x)^{\top}(y-x)+o(|y-x|)
$$

$$
\therefore f\left(x_{k}+\varepsilon \bar{v}\right)=f\left(x_{k}\right)+\varepsilon \cdot \nabla f\left(x_{k}\right)^{\top} v_{k}+o(\varepsilon)
$$

$$
\underbrace{\lim _{\varepsilon} \frac{f\left(x_{k}+\varepsilon \bar{v}\right)-f\left(x_{k}\right)}{\varepsilon}}_{\varepsilon \rightarrow 0}=\nabla f\left(x_{k}\right)^{\top} \nu_{k}
$$

Rate of change of $f(x)$ along direction $V_{k}$

So what is the max and min value of $\nabla f\left(x_{k}\right)^{\top} V_{k}$ ?


By canchy-Scheravz inequality

$$
-\left\|\nabla f\left(x_{k}\right)\right\|\|v\| \leqslant \nabla f\left(x_{k}\right)^{\top} v_{k} \leqslant\left\|\nabla f\left(x_{k}\right)\right\|\|v\|
$$

$\therefore$ Maximal downward direction $=-\nabla f\left(x_{k}\right)$
$\oplus$ Thus: $\quad x_{k+1}=x_{k}+v_{k}=x_{k}-\alpha \nabla f\left(x_{k}\right)$
This is called "steepest gradient descent (SGD)"
$\Theta$ Steepest Grad. Descent Algorithm :
(1) $k=0 ; \alpha=\sin a l l$ positive value ; $\varepsilon=$ very small value
(2) $x[k]=$ vandorn vector
(3) Calenlate $\nabla f(x[k])$

(4) $x[k+1]=x[k]-\alpha \nabla f(x[k])$
(5) if $f(x[k+1])-f(x[k])<\varepsilon$ then terminate
(6) $\mathrm{kt+}$
(7) Goto (3)

Questions:
(a) Why does step size $\alpha$ meed to be small?
(b) Can you draw a case where SGD may not converge if $\alpha$ is not small enough?
(c) Does SGD take the shortest path from $x_{0}$ to $x^{*}$ ?

