
Proofs:
Let's find this v, I, U assuming they always

exist.

Assuming AV=45, let'scalculate what4,5, V are.

* Prove that V is the eigenbasis ofAl Crow space ofAl
A =UZVT

AT =v2nT =v2 uT

:. AA =(v2nT) (uzvi)
=VIUTUZVT
a VERVT =VIY-

or ATA.V =VE2
: V is the eigenvector matrix ofAAT

and [4, 52 ... Iare the , 2... ofmatrix AAT.
Aman*ATA = nen.:V =nxw

*Prove that U is the eigenbasis of A (col, space of A).

Now, how to find U?

AAT =(EVT) (v2, nT) =45vivant
=nT= Uzu

=7 AATH =uz

↳ Eigenector o-)AAT.
u =

mxm

Prove that 4 and V are both orinogonal.



* Prove that matrix Aalways has the sub decomposition

AA.V =x.V -> always true, 130,and Vis 1 since
AAis PSD.

AE)=
Now AAT=A/Y =x) -This

is in

eigenvector
equfor AAT.

:. The matrix() must be ovinomormal, since
AATis
PSD.

Let u =

Awhere his orthonormal..:AV:U

:
A =UV-=UEVTX
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#Principal ComponentAnalysis
⑪ Z

de

C zu

I / - covariance (A) =AAT =[e.Iter*-

... Cor(Yz)I
I

.Ans:Let's representdata in another orthogonal basinB.

⑬ Z =i
=j2]

jiinte↳
Note, when B is

new
basis outogonal itcan
B be easilymade

ortwonormal.
I

⑤
new basis B, it becomes, say, Zi.

fourier transform. zzT =[...]Thew) =1
D =(me... ) =[da2...dir]

(B) (B
-

x)
T

= 1

intered isso

many D.D(BTT =

B1 . . .
.

.B
=BT.

So, IhnItin....]=[aac...any BD.DTB)
T
=1

..B. z
=D

D. DT (B-1)T =B1

Now, to be uncorrelated,
covariance of data (in new basis)
should be a diagonal

DDTB =B1

matrix because uncorrelated means :.B is eigenvectorL
CoV(x,y) =0) Thus, the eigenvectors ofthe data

covariance

matwix gives us the desired basis vectors

to decorrelate the data.



Now
,
to compress data D

, basically remove the last K
columns of B and last k vows of Z, then take the

product of the matrices B
'

Z
'
= D

'

.

Tris D
'
is the compressed matrix .



434 : optimization Basics

③ a flu) : lR→tR Ifk) = 0 gives us local extremism
On

\ How do you know maxima or minima ?

in Itself
.

!
i.e . H÷e* ' > oour O

⑨ Functions in higher dimensions (ie .

.
when Io is vector) ⇒ f : IRN→ IR

fan
= of

.

-
- I :÷÷)

" Labia" or" del"

FfCx) =

- 8¥, 8÷nz i - - d¥nn
Ehf

÷. Int
- - -

Iq!
III. Em

.

. - - 8¥
-

caned the
"

Hessian
"

matrix

local

③ How do we findnwvaxima / minima of such functions of vectors ?
^

-
Tf
,
= O ⇒ gives extremisms✓

Ff×* > o ⇒ indicates minima
>

✓ thesis a positive definite matrix .

Matrix A is P.D .

When all Xi LA) 7 O or atAn >O
,
Hn

positive semi definite (PSD) when Xi (A) 7,0 ,
n' Ase 7,0 ,

the



② Note : 87×1*40 is a necessary but not sufficient condition

Example : fcn) = ge3

Tf, = 3mV = o ⇒ sit = o

But is set a minima or maxima or neither ?

Ff (n*) = Gse Imo = 0

But observe that n* = O is neither a minima or maxima
.

afx

NK = O is NOT maxima or✓ ' a caned
"

stationary
" points
" '

£f× > O is sufficient condition

=

③ Of, = O and 87×70 gives us local minima .

But how can I get global minima ?

I
v

well
, if f× is a convex f?

,
then local minima is global minima .

I
convex iron - convex

③ What's a convex f? ?

↳ Functions that have an ✓
upward curvature everywhere .

-

Intuitively : the straight line joining find
any two points fee, ) and fcnz) .

!
I

always lies above fly) ,

where y C- [se, .kz] / i
!

24 Nz



Mathematically : a flue) t (I - d) f-Luz) Z f (am +( t -a)Nz)
,

a c-[oil]

t
Tf, Z O €7 convex fn.es

.

How to test for convexity ?

⑨ Summary : Given flu) ,
if F'fee) 7,0 ( i.e. , Positive semi -def Hessian)
then fCx) is Connex f? .

Thus floe) = 0 gives GLOBAL MINIMA
.

③ at ¥7:
"

is :L,baidu.mex.iwmanyases.tsaief.muto solve for Tf (x) = O .

Example : flu) = eat at

↳ Closed form solution difficult

T
V

we need to solve such functions iteratively
Ls Motivates gradient descent

③ Main idea : we want to start at some x = no

Move Seo → se
,
→ zez . - - . . → sett

S.t. sett is local)global minima of foe)

This implies : f (Nkt , ) < flak)
so from sek ,

we should go along a direction that

decreases the value of flak) .

↳ say this direction is Bk



fix)
A

→ → as J
ooo Mkt ,

= Mk t Uk µ
③ What 8 direction will take us most downward ?

-n,

Answer : The direction of - Ff(see) . •

•

seek✓ •ze* Mkt

Proof : Taylor 's 1st
.

order expansion says K2

f- ( y ) = f-Cn) t TfCnj (y- se) t Olly -xD

ooo f- ( sent EF) = flak) t E. Ffcnkjvk t O (E)

him f- (Matei ) - fleek ) = Offset)TVk
E.→ OT
-

Rate of change of floe) along direction Nk

so what is the max and min value of TfCnKTVK ?

I
often

}
wax when aligned

)a7I¥Ylayybµ .

← y min when opposite coso

By Cauchy - Schwarz inequality
- Hoffer) 1111414 7fCakjvk I#car) H Hull

ooo -Maximal downward direction =
- FfGer) B

③ Thus : '

Nkt ,
= Nk t Vk = Sek - X Fftkk)

T
step size .

This is called
"

steepest gradient descent (SED)
"



fix)

-
③ Steepest Grad . Descent Algorithm :

.

① k=o ; a = small positive value ; #
E = very small value - n,

@

• Uk
② see [k] = random vector / :* Matt

③ Calculate Ff ( sik)
Nz

④ w[kit] = NIKI - L TfCHEK] )

⑤ if flnfekti) - flats) L E then terminate

⑥ Kitt

⑦ Goto ③

Questions :

(a) Why does step size a need to be small ?

(b) Can you draw a case where SGD may not converge if d is not small enough ?

(c) Does SGD take the shortest path from seo to set ?


