Inertial Motion Tracking using IMUs

Inertial Measurement Unit (IMU)

Accelerometer

Gyroscope

Magnetometer

Inertial Measurement Unit (IMU)

Accelerometer

Gyroscope

Magnetometer

Inertial Measurement Unit (IMU)

Wide applications in motion tracking

Lot of work in inertial motion tracking

Open problem in mobile computing

Lot of work in inertial motion tracking

Open problem in mobile computing

No one has the solution ... but people making progress

Lot of work in inertial motion tracking

Open problem in mobile computing

No one has the solution ... but people making progress Let's understand what's the real difficulty here ...

One Prerequisite Slide: Rotation Matrices

Rotation is a function

Mathematically, rotation is a matrix

$$\begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Same for 3D Rotation

$$\begin{bmatrix} 3 \times 3 \\ \text{Rotation} \\ \text{Matrix} \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

MUSE: Our Goal is 3D Localization

Let's Understand the Inputs

Zoom into IMU data:

$$Accel. = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

$$\mathsf{Gyro.} = \begin{bmatrix} g_x \\ g_y \\ g_z \end{bmatrix}$$

Delta rotation in unit time

$$\mathsf{Mag.} = \begin{bmatrix} m_\chi \\ m_y \\ m_z \end{bmatrix}$$

(Earth's Magnetic North)

Can we solve localization with these inputs?

One possibility is:

But there is one BIG problem: Accel.
$$=\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

But there is one BIG problem: Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

But there is one BIG problem: Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

As an analogy

But there is one BIG problem:

Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

As an analogy

This makes orientation necessary

What is 3D orientation? Orientation is the 3D rotation needed to make:

This makes orientation necessary

What is 3D orientation? Orientation is the 3D rotation needed to make:

So, how will orientation solve the problem?

What we need to do is:

So 3D orientation is the key.

2 Main Opportunities:

1. Gravity

2. Magnetic North

Both measurable by IMU

Key idea: What rotation is needed such that

- 1) Gravity is exactly in my downward direction
- 2) North is exactly in my frontward direction

Key idea: What rotation is needed such that

- 1) Gravity is exactly in my downward direction
- 2) North is exactly in my frontward direction

Key idea: What rotation is needed such that

- 1) Gravity is exactly in my downward direction
- 2) North is exactly in my frontward direction

$$\begin{bmatrix} 3 \times 3 \\ \text{Rotation} \\ \text{Matrix} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -9.8 \end{bmatrix}$$

Tilt is determined (2 out of 3 DoFs)

Gravity says a lot about orientation, but not sufficient

Key idea: What rotation is needed such that

- 1) Gravity is exactly in my downward direction
- 2) North is exactly in my frontward direction

$$\begin{bmatrix} 3 \times 3 \\ \text{Rotation} \\ \text{Matrix} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -9.8 \end{bmatrix}$$

$$\begin{bmatrix} 3 \times 3 \\ \text{Rotation} \\ \text{Matrix} \end{bmatrix} \begin{bmatrix} a_x & m_x \\ a_y & m_y \\ a_z & m_z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 100 \\ -9.8 & 0 \end{bmatrix}$$

So is Gravity + North enough to get 3D Orientation?

Only when object is **Static** ... but not otherwise. Why?

So is Gravity + North enough to get 3D Orientation?

Only when object is **Static** ... but not otherwise. Why?

Because any motion of the object will reflect in the accelerometer ... thereby polluting the gravity estimate

So how to get 3D orientation? (Another idea)

Another Idea for Orientation: Integrate angular velocity from gyro

Initial Orientation +
$$\int_0^t (Gyro.) dt = \begin{cases} New \\ Orientation \end{cases}$$
 (at time t)

But gyro drifts, so only useful in short time scales

State of the art today: Sensor Fusion

Always know 3D orientation

Getting back to our goal

Getting back to our goal

Main take away: Gravity is the main anchor for 3D orientation

But what if object is not often static

But what if object is not often static

But what if object is not often static

No good solution today ...

Your job to solve the problem ...

Questions?