How about these data. Label Them as

Uncorrelated
Uncork.
$E\left[X_{1} X_{2}\right]=O^{=5}$
uncorvelated Dependent

Yes, uncorrelated since they cancel out.
$P\left(x_{2} \mid x_{1}\right)$ is $\neq P\left(x_{2}\right) \Rightarrow$ Not independent

Correlated
Dependent $\underset{P\left(x_{2} \mid x_{1}\right)}{\substack{\text { Insp if } \\ \text { if }}}=P\left(x_{2}\right)$

Unconvelated Dep.

uncor
Dep.

Corr.
Uncork. Dep. +re - re

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{1} x_{2}\right)=E\left[x_{1} x_{2}\right]-\frac{\text { +ven }}{E\left[x_{1}\right]} \underset{E\left[x_{2}\right]}{\text {-vc }} \\
& E\left[\left(x_{1}-N_{x_{1}}\right)\left(x_{2}-N_{x_{2}}\right]^{k} \quad \text { is this }=0\right. \text { ? }
\end{aligned}
$$

Application: covariance of received mic. data.

$$
\begin{aligned}
& \text { ide., say } x=A \bar{s}+\bar{n} \\
& \operatorname{cov}(x)=E\left[x x^{\top}\right] \\
& \underline{I}_{1} \underline{Q}_{2}-\left[\begin{array}{c}
x_{1} \\
\underline{\theta}_{2} \\
\vdots \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{llll}
1 & & & 1 \\
a_{\theta_{1}} & a_{\theta_{2}} & \cdots & a_{\theta_{n}} \\
1 & & & 1
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right]+\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{m}
\end{array}\right] \\
& \operatorname{Cov}(\bar{x})=E\left[X X^{\top}\right]=E\left[\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{m}
\end{array}\right]\left[\begin{array}{lll}
x_{1} & x_{2} & \ldots
\end{array} x_{m}\right]\right] \\
& =E\left[\begin{array}{cccc}
x_{1} x_{1} & x_{1} x_{2} & \cdots & x_{1} x_{m} \\
x_{2} x_{1} & x_{2} x_{2} & \cdots & x_{2} x_{m} \\
\vdots & & & \vdots
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { matrix }
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
x_{1}^{t_{1}} & x_{1}^{t_{2}} & & x_{1}^{t_{k}} \\
x_{2}^{t_{1}} & x_{2}^{t_{2}} & & x_{2}^{t_{k}} \\
\vdots & \vdots & & \vdots \\
x_{m}^{t_{1}} & x_{m}^{t_{2}} & & x_{m}^{t_{k}}
\end{array}\right]\left[\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \cdots & x_{m}^{t_{1}^{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \cdots & x_{m}^{t_{2}} \\
\vdots & & & \sum^{\sigma_{1}^{2}}{ }^{E\left[x_{1} k_{2}\right]} \\
\end{array}\right]
$$

