Bayes' Rule:
Likelihood
Prior
knife

$$
\frac{P(A \mid B)}{r}=\frac{P(A, B)}{P(B)}=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

posterior

Eve
marginalization

$$
\begin{aligned}
& \alpha=P \text { (Knife | Eve) } \\
& =\frac{P(B \mid A) \cdot P(A)}{\sum_{A} P(B \mid A) P(A)}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
P(A, B, C) & =P(A \mid B, C) P(B, C) \\
& =P(A \mid B, C) P(B \mid C) P(C)
\end{aligned}
$$

Random Variables:

Variable x

$$
E[x]=N_{x}=\sum_{i} x_{i} f_{x}\left(x_{i}\right) \quad \operatorname{Vav}(x)=E\left[\left(x-N_{x}\right)^{2}\right]
$$

Joint Distribution $\quad f_{X, Y}(x, y)$

$$
P\left(\left.X=\left[\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
6
\end{array}\right] \right\rvert\, Y=4\right)
$$

Conditional Distribution

$$
\begin{aligned}
& P(X \mid Y)= \frac{P(X Y)}{P(Y)} \\
& P(X \mid Y=2)= P\left(X=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
4 \\
6
\end{array}\right], Y=2\right) \\
& P(Z)=\sum_{M} P(Z, M) \\
&= \frac{P(Y=2)}{\sum_{Y} P(X=[] Y=2)}
\end{aligned}
$$

- Independence :
X and Y are independent when

$$
P(X, Y)=P(X) P(Y) \text { for all values }
$$

If X, Y are

$$
P(x \mid Y)=P(x)
$$ of x, y indep

Variance and Covariance

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left[\left(x-\mu_{x}\right)^{2}\right] \\
& =E\left[x^{2}+N_{x}^{2}-2 x \mu_{x}\right] \\
& =E\left[x^{2}\right]+\mu_{x}^{2}-2 \mu_{x}^{2} \\
& =E\left[x^{2}\right]-E[x]^{2}
\end{aligned}
$$

$$
\operatorname{Cov}(x, y)=E\left[\left(X-\mu_{x}\right)\left(y-\mu_{y}\right)\right]
$$

$$
=E\left[x y-x N_{y}-N_{x} y+N_{x} N_{y}\right]
$$

$$
=E[X Y]-E[X] N_{Y}-\mu_{X} E[Y]+\mu_{X} N_{Y}
$$

$$
=E[X Y]-E[X] E[Y]
$$

When $\operatorname{cov}(x, y)=0$
ie., $E[X Y]=E[X] E[Y]$ called uncorrelated

$$
\begin{aligned}
& \text { Correlation } \\
& \text { coefficient }
\end{aligned}=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}} \in[-1,1]
$$

Meaning of independence and correlation (or uncorrelation) in plain English?

Two RVs X and Y ave uncorrelated. Ave they also independent?

Will 2 independent RUs be always uncorrelated ?
Yes-

After class discussion

$$
\begin{aligned}
E[[x] & =\sum_{y} \sum_{x} x y f_{x y}(x, y) \\
& \sum_{1} \sum_{x} x y f_{x}(x) f_{y}(y) \\
& =\sum_{y} \sum_{x} x f_{x}(x) y f_{y}(y) \\
& =\sum_{1} y f_{y}(y) \sum_{1} x f_{x}(x)=E[x] E[y]
\end{aligned}
$$

Vectors of Random Variable \bar{x}

Expected value of Random Vector $E[\bar{x}]$

$$
E[\bar{X}]=\left[\begin{array}{c}
E\left[x_{1}\right] \\
E\left[x_{2}\right] \\
\vdots \\
E\left[x_{n}\right]
\end{array}\right] \quad \bar{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{c}
1
\end{array}\right]\left[\begin{array}{c}
2 \\
5
\end{array}\right]^{2}-1 \quad\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]-3,\left[\begin{array}{c}
1 \\
3 \\
5 \\
5
\end{array}\right]
$$

* Vector version of Variance \rightarrow Covariance matrix

$$
\begin{aligned}
& \operatorname{Cov}(\bar{x})=\operatorname{cov}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\text { Pairwise covariances } \\
& {\left[\begin{array}{ccc}
\operatorname{cov}\left(x_{1}, x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) & \cdots \\
\vdots & \operatorname{cov}\left(x_{1} x_{n}\right) \\
\operatorname{cov}\left(x_{n} x_{1}\right) & \cdots & \operatorname{cov}\left(x_{i} x_{j}\right) \quad \forall i, j
\end{array}\right.}
\end{aligned}
$$

Covariance matrix $\operatorname{Cov}(x)=E\left[x x^{\top}\right]-E[x] E\left[x^{\top}\right]$

$$
\begin{aligned}
E\left[X x^{\top}\right]= & E\left[\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & \left.x_{n}\right]
\end{array}\right]=\left[\begin{array}{lll}
E\left[x_{1} x_{1}\right] & E\left[x_{1} x_{2}\right] & \ldots E\left[x_{1} x_{n}\right] \\
E\left[x_{2} x_{1}\right] & E\left[x_{2} x_{2}\right] & \ldots \\
E\left[x_{n} x_{1}\right] & & E\left[x_{n} x_{n}\right]
\end{array}\right]\right. \\
\operatorname{cov}(\bar{x})= & \sum_{1}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \operatorname{cov}\left(x_{1} x_{2}\right) & \operatorname{cov}\left(x_{1} x_{3}\right) \\
\operatorname{cov}\left(x_{2} x_{1}\right) & \sigma_{2}^{2} \\
\operatorname{cov}\left(x_{3} x_{1}\right) & \operatorname{cov}\left(x_{3} x_{2}\right) & \operatorname{cov}\left(x_{1} x_{n}\right) \\
\operatorname{cov}\left(x_{n} x_{1}\right) & \cdots
\end{array}\right]
\end{aligned}
$$

- Visualize a $2 D$ jointly Gaussian random variable. where x_{1} and x_{2} are uncowelated and $N(3,1)$ and $N(1,1)$

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi}\left|\Sigma_{1}\right|^{1 / 2}} e^{-\frac{\left(x-\mu_{x}\right) \Sigma_{1}^{-1}\left(x-\mu_{x}\right)^{\top}}{2}}
$$

Interpret 2D data points as a realization of rand. vectors.

So data points have a model wow \rightarrow helps for analysis

Is the data uncorrelated \leftarrow
(How about these data. Label Them as $\rightarrow\left\{\begin{array}{l}\text { correlated: } C \\ \text { Uncorrelated: } U \\ >\left\{\begin{array}{l}\text { Independent: I } \\ \text { Dependent: } D\end{array}\right.\end{array}\right.$

$$
E\left[x_{1} x_{2}\right]=0^{=5}
$$

$$
\Leftrightarrow x_{1} x_{2}+x_{1}^{\prime} x_{2}^{\prime}+x_{1}^{\prime \prime} x_{2}^{\prime \prime}+\ldots . . .=?
$$

Yes, uncorrelated since they cancel out.
$P\left(x_{2} \mid x_{1}\right)$ is $\neq P\left(x_{2}\right) \Rightarrow$ Not independent

Application: covariance of received uric. data.

$$
\begin{aligned}
& \text { i.e., say } x=A \bar{s}+\bar{n} \\
& \operatorname{cov}(x)=E\left[x x^{\top}\right]
\end{aligned}
$$

$$
\begin{aligned}
P(A \mid \text { Red }) & =\frac{P(A, \text { Red })}{P(\text { Red })}=\frac{P(\text { Red } \mid A) P(A)}{P(\text { Red })} \\
& =\frac{\frac{1}{3} \cdot \frac{1}{2}}{P(\text { Red })}=\frac{\frac{1}{6}}{P(\text { Red }, A)+P(\text { Red, } B)} \\
& =\frac{1}{6} \cdot \frac{1}{P(\text { Red } \mid A) P(A)+P(\text { Red } \mid B) P(B)} \\
& =\frac{1}{6} \cdot \frac{1}{\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{2}} \\
& =\frac{1}{6} \cdot \frac{1}{\frac{1}{6}+\frac{1}{3}}=\frac{1}{6} \cdot \frac{1}{6} \\
& =\frac{1}{6} \cdot \frac{2}{2}=\frac{1}{3}
\end{aligned}
$$

Likeliluood is self evident (given hypothesis, you $\rightarrow P($ article $\mid C N N)$ know the chance of the evidence)
Posterior requires yow to know wore about other hypothesis (given evidence, you need to $\rightarrow P(C N N \mid$ article $)$ understand how the evidence velates to other hypothesis)

