
ECE 220: Computer Systems & Programming

Lecture 2: Repeated code- TRAPs and Subroutines
Thomas Moon

Previous lecture
• I/O basics, I/O types
• Input from keyboard/Output to monitor
• Memory-mapped I/O, Handshaking (ready-bit), Polling

2

Today’s lecture
• TRAPs: GETC, IN, OUT, PUTS, PUTSP, HALT
• Subroutines: JSR, JSRR
• Demystify R7

ß Why?

3

POLL LDI R1, KBSR_ADDR
 BRzp POLL
 LDI R0, KBDR_ADDR

POLL2 LDI R1, DSR_ADDR
 BRzp POLL2
 STI R0, DDR_ADDR

KBSR_ADDR .FILL xFE00
KBDR_ADDR .FILL xFE02
DSR_ADDR .FILL xFE04
DDR_ADDR .FILL xFE06

From Lec 1

GETC
OUT

Input/Output routines by USER

by TRAP

TRAP x20
TRAP x21

or

User Program Accessing I/O

• Problem
• It requires too many specific details for programmer

(device regs, memory-mapped, handshaking protocols,
etc)

• Security issue: I/O resources shared with multiple
programs

• Solution: make this part of OS
 Service routines or system calls

1. User program invokes system call
2. OS code performs operation
3. Returns control to user program

• In LC-3, this is done through the TRAP mechanism. 4

x0000

Interrupt Vector Table
x01FF
x0200

x2FFF
x3000

xFDFF
xFE00

xFFFF

Trap Vector Table

Device Register Addresses

Supervisor Stack
Operating System and

Available for
User Programs

x00FF
x0100

x0000

TRAP Instruction

• Trap vector (8-bit index)
• Table of service routine addresses (x0000-x00FF)
• Zero-extended into 16-bit memory address
• R0 is used to store the return value or to pass the argument.

5

vector symbol routine

x20 GETC read a single character into R0 (no echo)

x21 OUT output a character in R0 to the monitor

x22 PUTS write a string to the console (addr in R0)

x23 IN print prompt to console, read and echo
character from keyboard (R0)

x24 PUTSP write a string to the console (2 characters
per memory location) (addr in R0)

x25 HALT halt the program

PUTS vs PUTSP

6

.ORIG x3000
LEA R0, LB
PUTS
HALT
LB .STRINGZ "abcd"
.END

.ORIG x3000
LEA R0, LB
PUTSP
HALT
LB .FILL x6261
.FILL x6463
.FILL x0
.END

They both prints
abcd

Q. How many different TRAP routines can be
implemented?

7

TRAP Mechanism Operation

8

1. Lookup starting address.
2. Transfer to service routine.
3. Return (RET = JMP R7).TRAP x23 (or IN)

Trap Vector Table

RET (or JMP R7)

x4000

x4001

1. R7←PC (x4001)
2. MAR←x0023
3. MDR←x04A0

PC←MDR (x04A0)

PC←R7 (x4001)

*The actual value of TVT is subjective to
the simulator.

LC-3 TRAP Mechanism
1. TRAP instruction

• used by user program to transfer control to OS
• 8-bit Trap vector names one of

256 service routines
2. Table of starting addresses

• stored at x0000 through x00FF in memory
• called Trap Vector Table (or System Control

Block)
3. Set of service routines

• part of OS
• start at arbitrary addresses (within OS)
• LC-3 is designed to have upto 256 routines

4. Linkage
• return control back to user program

9RET (a.k.a JMP R7)

TRAP example

10

Describe the program.

 .ORIG x3000
 LD R0, CAP_A
 LD R1, CNT

LOOP
 OUT
 ADD R1, R1, #-1
 BRp LOOP
 HALT

CNT .FILL #3
CAP_A .FILL x41
 .END

TRAP example

11

Describe the program.

 .ORIG x3000
 LD R0, CAP_A
 LD R7, CNT

LOOP
 OUT
 ADD R7, R7, #-1
 BRp LOOP
 HALT

CNT .FILL #3
CAP_A .FILL x41
 .END

à If we have to use R7,
what will be the solution?

Saving and Restoring Registers

•Called routine – “callee-save”
• Before start, save any registers that will be altered
• Before return, restore the registers

•Calling routine - “caller-save”
• Save registers destroyed by called routines, if values

needed later
• Save R7 before any TRAP
• Save R0 before IN or GETC (what about OUT or PUTS?)

• Or avoid using those registers

12

TRAP: Callee-save Example

13

R1 is callee-saved because it will be changed.

Subroutines

• Service routines (TRAP) provides 3 main functions:
• Shield programmers from system-specific details
• Write frequently-used code just once
• Protect system resources from malicious/clumsy programmers

• A subroutine is a program fragment that:
• performs a well-defined task
• is called by another user program
• returns control to the calling program when finished
• lives in user space (not part of OS, not concerned with protecting

hardware resources)
15

JSR/JSRR – Jump to Subroutine

• Jumps to a location (like a branch but unconditional)
and saves current PC (addr of next instruction) in R7

• To return form a subroutine, use RET (just like TRAP).
16

TEMP = PC
if (bit[11] == 0)
 PC = baseR;
else
 PC = PC + SEXT(PCoffset11);
R7 = TEMP;

JSR Example

17

 .ORIG x3000
 LD R1, VAL1
 LD R2, VAL2
 LD R3, VAL3
 JSR ADD3
 HALT

; ADD3 subroutine: R0 = R1 + R2 + R3
ADD3
 AND R0, R0, #0
 ADD R0, R0, R1
 ADD R0, R0, R2
 ADD R0, R0, R3
 RET

VAL1 .FILL #2
VAL2 .FILL #3
VAL3 .FILL #4
 .END

JSRR Example

18

 .ORIG x3000
 LD R1, VAL1
 LD R2, VAL2
 LD R3, VAL3
 LEA R4, ADD3
 JSRR R4
 HALT

; ADD3 subroutine: R0 = R1 + R2 + R3
ADD3
 AND R0, R0, #0
 ADD R0, R0, R1
 ADD R0, R0, R2
 ADD R0, R0, R3
 RET

VAL1 .FILL #2
VAL2 .FILL #3
VAL3 .FILL #4
 .END

Ø When do you use JSRR?

To use a subroutine,

• A programmer must know
1. its address (or at least a label)
2. its function
3. its arguments (where to pass data in, if any)

Example:
• In OUT service routine, R0 is the character to be printed.
• In PUTS service routine, R0 is the address of string to be printed.

4. its return value (where to get computed data, if any)
• In GETC service routine, character read from the keyboard is returned in R0.

19

Saving/Restoring Registers in Subroutines

1. Generally, use callee-save strategy, except for return values
2. Save anything that the subroutine will alter internally
3. It’s good practice to restore incoming arguments to their original

values.

20

4. If Nested subroutine, Caller-Save R7

Example: Subtraction

21

 .ORIG x3000
 LD R2,Value1 ;load a value into R2
 LD R3,Value2 ;load a value into R3
 JSR SUBTR ;jump to subroutine
 HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG
 NOT R0,R0
 ADD R6,R0,#1
 LD R0,SaveR0_NEG
 RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB
 ST R6, SaveR6_SUB
 ADD R0, R3, #0
 JSR NEG
 ADD R1, R2, R6
 LD R0, SaveR0_SUB
 LD R6, SaveR6_SUB
 RET

-What problem we have?

Example: Subtraction

22

 .ORIG x3000
 LD R2,Value1 ;load a value into R2
 LD R3,Value2 ;load a value into R3
 JSR SUBTR ;jump to subroutine
 HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG
 NOT R0,R0
 ADD R6,R0,#1
 LD R0,SaveR0_NEG
 RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB
 ST R6, SaveR6_SUB
 ADD R0, R3, #0
 JSR NEG
 ADD R1, R2, R6
 LD R0, SaveR0_SUB
 LD R6, SaveR6_SUB
 RET

x3003 -------------à

x300D -----------à

1. R7 = x3003

2. R7 = x300D à R7 is overwritten

3. R7 = x300D à Never return to x3003

 .ORIG x3000
 LD R2,Value1 ;load a value into R2
 LD R3,Value2 ;load a value into R3
 JSR SUBTR ;jump to subroutine
 HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG
 NOT R0,R0
 ADD R6,R0,#1
 LD R0,SaveR0_NEG
 RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB
 ST R6, SaveR6_SUB
 ST R7, SaveR7_SUB
 ADD R0, R3, #0
 JSR NEG
 ADD R1, R2, R6
 LD R0, SaveR0_SUB
 LD R6, SaveR6_SUB
 LD R7, SaveR7_SUB
 RET 23

1. R7 = x3003

2. R7 = x300D

3. R7 = x300D

4. R7 = x3003

x300D -----------à

x3003 -------------à

à Return to x3003

24

Callee-save vs Caller-save???

Callee-save R?, R?

Caller-save R?

