ECE 220: Computer Systems & Programming

Lecture 2: Repeated code- TRAPs and Subroutines
Thomas Moon

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Previous lecture

* |/O basics, I/0 types
* Input from keyboard/Output to monitor
* Memory-mapped |I/O, Handshaking (ready-bit), Polling

Today’s lecture

* TRAPs: GETC, IN, OUT, PUTS, PUTSP, HALT
e Subroutines: JSR, JSRR
* Demystify R7

* You may use any registers, but we recommend that you avoid using R7. & Why?

From Lec 1

Input/Output routines by USER

by TRAP

User Program Accessing I/O

 Problem

* |t requires too many specific details for programmer
(device regs, memory-mapped, handshaking protocols,
etc)

* Security issue: |/O resources shared with multiple
programs

 Solution: make this part of OS

Service routines or system calls
1. User program invokes system call
2. OS code performs operation
3. Returns control to user program

* In LC-3, this is done through the TRAP mechanism.

x0000

xO00FF
x0100

x01FF
x0200

x2FFF
x3000

xFDFF
xFEO0O

xFFFF

Trap Vector Table

Interrupt Vector Table

Operating System and
Supervisor Stack

Available for
User Programs

Device Register Addresses

TRAP Instruction

15 14 13 12 131 10 1 & o5 4 3 2 1 {4

9 8
TRAP |1 11 1|l0 0 0 0 trapvect8

* Trap vector (8-bit index)
* Table of service routine addresses (x0000-xOOFF)
» Zero-extended into 16-bit memory address
* RO is used to store the return value or to pass the argument.

vector | symbol | routine

x20 GETC |read a single character into RO (no echo)

x21 OUT | output a character in RO to the monitor

x22 PUTS | write a string to the console (addr in RO)

print prompt to console, read and echo

x23 IN character from keyboard (RO)

write a string to the console (2 characters

x24 | PUTSP per memory location) (addr in RO)

x25 HALT | halt the program

PUTS vs PUTSP

. STRINGZ "

. END

X3000

XEDD2

They both prints
abcd

x3000

XE0D2

LEA RO,LB
PUTSP

HALT

LDR R1,R1l,#-31

LDR R2,R1,#-29
NOP

1o 14 13 12 13 10 1 & oS5 4 3 2 1 4

9 8
TRAP |1 11 1/l0 0 0 0 trapvect8

Q. How many different TRAP routines can be
implemented?

TRAP Mechanism Operation

User Program Trap Vector Table

*The actual value of TVT is subjective to
the simulator.

x0023| 0000 0100 1010 0000

1. R74PC (x4001)

2. MAR<x0023 1

3. MDR<XO4A0 Lookup starting address.

2. Transfer to service routine.
3. Return (RET = JMP R7).

x4000 1111 0000 0010 0011
x4001

PC&MDR (x04A0)

Service Routine

B

1100 000 111 00000O RET (orJI\/IP R7)

x04A

PC&R7 (x4001)

LC-3 TRAP Mechanism
TRAP instruction

15 14 13 12 11 18 9 7 & &5 4 3 2

1

8
 used by user program to transfer controltoOS TRAP |1 1 1 1{0 0 0 0| trapvect8

* 8-bit Trap vector names one of
256 service routines

Table of starting addresses

 stored at x0000 through xO0FF in memory

 called Trap Vector Table (or System Control
Block)

Set of service routines

e part of OS

 start at arbitrary addresses (within OS)

* LC-3 is designed to have upto 256 routines

Linkage

* return control back to user program

Xx044C BRZ
X0450 BRZ

X0456 BRZ
X0463 BRZ

0S_R2 x0449 x0000 NOP
0S_R3 x044A x0000 NOP
0S_R7 x044B x0490 BRZ x04DC
TRAP_GETC x044C xAlFl LDI RO,0S KBSR
x044D TRAP_GETC
X044E RO, 0S_KBDR
x044F
TRAP_OUT x0450 R1,TOUT R1
TRAP_OUT WAIT x0451 R1,0S_DSR
x0452 TRAP_OUT_WAIT

Xx0453 RO,05_DDR
x0454 R1,TOUT_R1
x0455

RET (a.k.a JMPR7)

TRAP example

Describe the program.

TRAP example

Describe the program.

- If we have to use R7,
what will be the solution?

Saving and Restoring Registers

e Called routine — “callee-save”

* Before start, save any registers that will be altered
e Before return, restore the registers

e Calling routine - “caller-save”
e Save registers destroyed by called routines, if values
needed later
e Save R7 before any TRAP
e Save RO before IN or GETC (what about OUT or PUTS?)
* Or avoid using those registers

12

TRAP: Callee-save Example

TRAP_OUT x0450 x33F4 5T
TRAP OUT WAIT x0451
X0452

X0453
X0454
X0455

R1,TOUT R1
R1,0S DSR
TRAP OUT WAIT
RO,0S DDR
R1, TOUT R1

R1 is callee-saved because it will be changed.

13

Subroutines

* Service routines (TRAP) provides 3 main functions:
 Shield programmers from system-specific details
* Write frequently-used code just once
* Protect system resources from malicious/clumsy programmers

* A subroutine is a program fragment that:
* performs a well-defined task
* is called by another user program
* returns control to the calling program when finished

* lives in user space (not part of OS, not concerned with protecting
hardware resources)

JSR/JSRR — Jump to Subroutine

19 18 13 18 11 48 5 '8 7 g 5 & & 1 O

JSR 01 0 0|1 T == g s N

15 14 13 12 11 10 8 B ¥ B8 &9 § 3 Z 1

0
JSRR (01 0 0/0/0 0/ Base |0 0 0 0 0 O

e Jumps to a location (like a branch but unconditional)
and saves current PC (addr of next instruction) in R7

TEMP = PC
if (bit[1l1l] == 0)
PC = baseR;

else
PC = PC + SEXT (PCoffsetll);

R7 = TEMP;

* To return form a subroutine, use RET (just like TRAP). .

JSR Example

.ORIG
LD

LD

LD
JSR
HALT

X3000
R1, VAL1
R2, VAL2
R3, VAL3
ADD3

: ADD3 subroutine: RO = R1 + R2 + R3

ADD3
AND
ADD
ADD
ADD
RET
VAL1 .FILL
VAL?2 .FILL
VAL3 .FILL
. END

RO, RO, #0
RO, RO, R1
RO, RO, R2
RO, RO, R3

#2
#3
#4

17

JSRR Example

. ORIG x3000
LD R1, VAL1
LD R2, VAL2
LD R3, VAL3
LEA R4, ADD3
JSRR R4
HALT

: ADD3 subroutine: RO =

ADD3
AND RO, RO,
ADD RO, RO,
ADD RO, RO,
ADD RO, RO,
RET

VAL1 .FILL #2

VAL2 .FILL #3

VAL3 .FILL #4
. END

Rl + R2 + R3

#0
R1
R2
R3

» When do you use JSRR?

18

To use a subroutine,

* A programmer must know
1. its address (or at least a label)
2. its function
3. its arguments (where to pass data in, if any)

Example:
* In OUT service routine, RO is the character to be printed.
* In PUTS service routine, RO is the address of string to be printed.

4. its return value (where to get computed data, if any)
* In GETC service routine, character read from the keyboard is returned in RO.

Saving/Restoring Registers in Subroutines

1. Generally, use callee-save strategy, except for return values
2. Save anything that the subroutine will alter internally

3. It's good practice to restore incoming arguments to their original
values.

4. If Nested subroutine, Caller-Save R7

20

Example: Subtraction

. ORIG
LD

LD
JSR
HALT

'NEG: R6 = -R0O

NEG

; SUBTR:
SUBTR

ST
NOT
ADD
LD
RET
R1 = R2
ST
ST
ADD
JSR
ADD
LD
LD
RET

X3000

R2,Valuel
R3,Value?2
SUBTR

RO,SaveR0_NEG
RO, RO
R6, R0, #1

RO, S

- R3
RO,
RG,
RO,
NEG
R1,
RO,
RG,

aveRO NEG

SaveR0O_SUB
SaveR6_SUB
R3, #0

R2, R6
SaveR0O_SUB
SaveR6_SUB

»load a value into R2
»load a value into R3
;jump to subroutine

-What problem we have?

21

Example: Subtraction

. ORIG
LD
LD
JSR
HALT
= —R0O
ST
NOT
ADD
LD
RET

: R1 = R2

ST
ST
ADD
JSR

ADD
LD

LD
RET

x3000

R2,Valuel ; load a value into R2
R3,Value?2 ; load a value into R3
SUBTR ;jump to subroutine

RO,SaveR0_NEG
RO,R0O

R6,R0, #1 — 2.R7=x300D
RO,SaveR0O_NEG

- R3

RO, SaveR0O_SUB —
R6, SaveR6_SUB -
RO, R3, #0

NEG -
R1, R2, R6 -
RO, SaveR0O_SUB
R6, SaveR6_SUB

1. R7 =x3003

— 3.R7=x300D

—> R7 is overwritten

- Never return to x3003

RET

X3000

R2,Valuel ; load a value into R2
R3,Value?2 ; load a value into R3
SUBTR ;jump to subroutine

RO, SaveRO_NEG
RO, RO
R6,R0O,#1

RO, SaveRO_NEG

- R3

RO, SaveR0O_SUB
R6, SaveR6_SUB
R7, SaveR7_SUB
RO, R3, #0

NEG

R1, R2, R6

RO, SaveR0O_SUB
R6, SaveR6_SUB
R7, SaveR7_SUB

|

e

2. R7 =x300D

1. R7 =x3003

3. R7 =x300D

A R7 =x3003 — Return to x3003

23

Callee-save vs Caller-save???

TRAP_PUTS

TRAP_PUTS_LOOP

TRAP_PUTS_DONE

X0456
X0457
X0458
X0459
X045A
X045B
X045C
X045D
X045E
X045F
X0460
Xx0461
X0462

RO,0S RO
R1,0S R1
R7,0S_R7
R1,R0,#0
RO,R1,#0
TRAP_PUTS DONE

R1,R1, #1
TRAP_PUTS_LOOP
RO,0S RO
R1,05 R1
R7,05_R7

Callee-save R?, R?

Caller-save R?

