
ECE 220 Computer Systems & Programming

Lecture 3 – Stack
January 27, 2026

• MP1 is due on Thursday at 10pm CT
• Mock quiz (extra-credit) should be taken next week 

(2/3 to 2/5) at CBTF



Lecture 2 Review: Nested Subroutines

; Nested Subroutines Example
.ORIG x3000
AND R1, R1, #0 ;init R1
AND R2, R2, #0 ;init R2
ADD R1, R1, #5 ;set R1=5
ADD R2, R2, #2 ;set R2=2
;call SUBTR to calculate R1-R2
JSR SUBTR 
;copy result to R6
ADD R6, R0, #0
HALT

;SUBTR - computes R1-R2
;IN: R1, R2
;OUT: R0 <- R1 - R2
SUBTR

ADD R3, R2, #0
JSR NEGATE ;R3 = -R2
ADD R0, R1, R3 ;R0 = R1-R2
RET

;NEGATE - negates the input
;IN: R3
;OUT: R3
NEGATE

NOT R3, R3
ADD R3, R3, #1
RET

.END
2Ø Would this program work?



Stack – An Abstract Data Type

A LIFO (last-in first-out) storage structure
• The first thing you put in is the _____________ thing you take out
• The last thing you put in is the _____________ thing you take out

This means of access is what defines a stack, not the specific 
implementation.

Two main operations:
Push: add an item to the stack
Pop: remove an item from the stack

IsFull: check whether the stack is full (_____________________)

IsEmpty: check whether the stack is empty (_____________________) 3



Coin Holder Example

First coin in is the last coin out

Ø Can you think of anything else that is implemented using a stack ADT? 4



Implementation in Hardware

Data items move, top of stack is fixed
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Implementation in Memory

Data items don’t move, just our idea about where the top of the stack is

v By convention, R6 holds the Top of Stack (TOS) pointer
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Basic Push and Pop Code

Using Software Implementation of Stack

• Push
 ADD R6, R6, #-1  ;decrement stack ptr

 STR R0, R6, #0  ;store data (to Top of Stack)

• Pop
  LDR R0, R6, #0  ;load data from stack ptr

  ADD R6, R6, #1  ;increment stack ptr
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Implement PUSH Subroutine

x3FF0
x3FF1
x3FF2
x3FF3
x3FF4
x3FF5
x3FF6
x3FF7
x3FF8
x3FF9
x3FFA
x3FFB
x3FFC
x3FFD
x3FFE
x3FFF
x4000 STACK_START

STACK_END

STACK_TOP (next available spot)
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.ORIG x3000
…
HALT

STACK_START .FILL x4000
STACK_END  .FILL x3FF0
STACK_TOP  .FILL x4000

PUSH_SAVER3 .BLKW #1
PUSH_SAVER6 .BLKW #1

.END



; PUSH subroutine
; IN: R0 (value)
; OUT: R5 (0 – success, 1 – fail)
; R3: STACK_END
; R6: STACK_TOP
PUSH
; save original values of R3 and R6, init R5 to 0

; load R3 with STACK_END, R6 with STACK_TOP
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; check for overflow (when stack is full: STACK_TOP < STACK_END) 

; store value (in R0) to stack, update STACK_TOP

; indicate the overflow condition on return
OVERFLOW

; restore modified registers and return
DONE_PUSH
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