
ECE 220 Computer Systems & Programming

Lecture 3 – Stack
January 27, 2026

• MP1 is due on Thursday at 10pm CT
• Mock quiz (extra-credit) should be taken next week

(2/3 to 2/5) at CBTF

Lecture 2 Review: Nested Subroutines

; Nested Subroutines Example
.ORIG x3000
AND R1, R1, #0 ;init R1
AND R2, R2, #0 ;init R2
ADD R1, R1, #5 ;set R1=5
ADD R2, R2, #2 ;set R2=2
;call SUBTR to calculate R1-R2
JSR SUBTR
;copy result to R6
ADD R6, R0, #0
HALT

;SUBTR - computes R1-R2
;IN: R1, R2
;OUT: R0 <- R1 - R2
SUBTR

ADD R3, R2, #0
JSR NEGATE ;R3 = -R2
ADD R0, R1, R3 ;R0 = R1-R2
RET

;NEGATE - negates the input
;IN: R3
;OUT: R3
NEGATE

NOT R3, R3
ADD R3, R3, #1
RET

.END
2Ø Would this program work?

Stack – An Abstract Data Type

A LIFO (last-in first-out) storage structure
• The first thing you put in is the _____________ thing you take out
• The last thing you put in is the _____________ thing you take out

This means of access is what defines a stack, not the specific
implementation.

Two main operations:
Push: add an item to the stack
Pop: remove an item from the stack

IsFull: check whether the stack is full (_____________________)

IsEmpty: check whether the stack is empty (_____________________) 3

Coin Holder Example

First coin in is the last coin out

Ø Can you think of anything else that is implemented using a stack ADT? 4

Implementation in Hardware

Data items move, top of stack is fixed

5

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

YesEmpty:

TOP

/ / / / / /

#18
/ / / / / /
/ / / / / /
/ / / / / /

NoEmpty:

TOP

#5
#31
#18

/ / / / / /

#12

NoEmpty:

TOP

/ / / / / /
/ / / / / /

#31
#18

/ / / / / /

NoEmpty:

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

Implementation in Memory

Data items don’t move, just our idea about where the top of the stack is

v By convention, R6 holds the Top of Stack (TOS) pointer

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

TOP

/ / / / / /
/ / / / / /
/ / / / / /

#18 TOP

#12
#5

#31
#18

/ / / / / /
TOP #12

#5
#31
#18

/ / / / / /

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x4000 x3FFF x3FFC x3FFER6 R6 R6 R6

x3FFF

x3FFE

x3FFD
x3FFC
x3FFB

/ / / / / /

6

Basic Push and Pop Code

Using Software Implementation of Stack

• Push
 ADD R6, R6, #-1 ;decrement stack ptr

 STR R0, R6, #0 ;store data (to Top of Stack)

• Pop
 LDR R0, R6, #0 ;load data from stack ptr

 ADD R6, R6, #1 ;increment stack ptr

x3FFF

x3FFE

x3FFD
x3FFC
x3FFB

#12
#5

#31
#18

/ / / / / /
TOP

7

Implement PUSH Subroutine

x3FF0
x3FF1
x3FF2
x3FF3
x3FF4
x3FF5
x3FF6
x3FF7
x3FF8
x3FF9
x3FFA
x3FFB
x3FFC
x3FFD
x3FFE
x3FFF
x4000 STACK_START

STACK_END

STACK_TOP (next available spot)

8

.ORIG x3000
…
HALT

STACK_START .FILL x4000
STACK_END .FILL x3FF0
STACK_TOP .FILL x4000

PUSH_SAVER3 .BLKW #1
PUSH_SAVER6 .BLKW #1

.END

; PUSH subroutine
; IN: R0 (value)
; OUT: R5 (0 – success, 1 – fail)
; R3: STACK_END
; R6: STACK_TOP
PUSH
; save original values of R3 and R6, init R5 to 0

; load R3 with STACK_END, R6 with STACK_TOP

9

Yes

No

; check for overflow (when stack is full: STACK_TOP < STACK_END)

; store value (in R0) to stack, update STACK_TOP

; indicate the overflow condition on return
OVERFLOW

; restore modified registers and return
DONE_PUSH

10

