ECE 220 Computer Systems & Programming

Lecture 3 — Stack
January 27, 2026

MP1 is due on Thursday at 10pm CT 10 ILLINOIS
Mock quiz (extra-credit) should be taken next week Electrical & Computer Engineering

(2/3 to 2/5) at CBTF GRAINGER COLLEGE OF ENGINEERING

Lecture 2 Review: Nested Subroutines

; Nested Subroutines Example ;SUBTR - computes R1-R2
.ORIG %3000 ;IN: R1, R2
AND R1, R1, #0 ;init R1 é'OUT‘ RO <- R1 - R2
.. UBTR
AND R2, R2, #0 ;init R2 ADD R3, R2, #0
ADD R1, R1l, #5 ;set R1=5 JSR NEGATE ;:R3 = -R2
ADD R2, R2, #2 ;set R2=2 ADD RO, R1l, R3 ;RO = R1-R2
;call SUBTR to calculate R1-R2 RET
JSR SUBTR
jcopy result to R6 ;NEGATE - negates the input
ADD R6, RO, #0 ;IN: R3
HALT ;OUT: R3
NEGATE
NOT R3, R3
ADD R3, R3, #1
RET
.END
» Would this program work? 2

E ECE ILLINOIS

Stack — An Abstract Data Type

A LIFO (last-in first-out) storage structure
e The first thing you put in is the thing you take out

* The last thing you put in is the thing you take out

This means of access is what defines a stack, not the specific
implementation.

Two main operations:
Push: add an item to the stack

Pop: remove an item from the stack

IsFull: check whether the stack is full ()

IsEmpty: check whether the stack is empty ()

3

E ECE ILLINOIS

Coin Holder Example

First coin in is the last coin out

N - 1995 N - 1996) - 1998)
4 1998 N 4 1982 N
(1982) 1995)
(1995)
Initial State After After Three After
One Push More Pushes One Pop
» Can you think of anything else that is implemented using a stack ADT? 4

E ECE ILLINOIS

Implementation in Hardware

Data items move, top of stack is fixed

Empty: | Yes Empty: | No Empty: | No Empty: | No
////]/] |«<—TOP #18 |« TOP #12 |«<TOP #31 «TOP
111111 111117 #5 #18
111111 111117 #31 /11117
111111 111117 #18 111117
111111 111117 /11117 111117

Initial State After After Three After
One Push More Pushes Two Pops

5

E ECE ILLINOIS

Implementation in Memory

Data items don’t move, just our idea about where the top of the stack is

x3FFB
x3FFC

Xx3FFD

x3FFE
X3FFF

/111117

/111117

/111117

/111117

/111117

x4000

Initial State

«—TOP
R6

/11117

/11117

/11117

111117

#18

x3FFF

After

One Push

«—TOP

R6

/11117
#12

#5
#31
#18

X3FFC

After Three

«—TOP

R6

More Pushes

¢ By convention, R6 holds the Top of Stack (TOS) pointer

/11117

#12

#5

#31

#18

x3FFE

After

Two Pops

«—TOP

R6

6

E ECE ILLINOIS

Basic Push and Pop Code x3FFB | ////]/
x3FFC #12 «—TOP

x3FFD #5
Using Software Implementation of Stack 3EFE 431
X3FFF #18

* Push
ADD R6, R6, #-1 ;decrement stack ptr
STR RO, R6, #0 ;store data (to Top of Stack)

* Pop
LDR RO, R6, #0 ;load data from stack ptr
ADD R6, R6, #1 ;increment stack ptr

7

E ECE ILLINOIS

Implement PUSH Subroutine

x3FF0 <« STACK_END
x3FF1
x3FF2 .ORIG x3000
x3FF3
x3FF4 HALT
x3FF5
x3FF6 STACK START .FILL x4000
x3FF7 STACK_END .FILL x3FFO
x3FF8 STACK TOP JFILL x4000
x3FF9

PUSH SAVER?3 .BLKW #1
x3FFA — c 3}
x3FFB PUSH_SAVER .BLKW #
x3FFC .END
x3FFD
x3FFE
x3FFF
x4000 <+ STACK_START <«— STACK_TOP (next available spot)

8

E ECE ILLINOIS

Fail — Set RS

ol
| 1/ \L il
ity

SetR5to 0

; PUSH subroutine

; IN: RO (value)

; OUT: R5 (0 - success, 1 - fail)

; R3: STACK END

; R6: STACK TOP

PUSH

; save original values of R3 and R6, init R5 to O

; load R3 with STACK END, R6 with STACK TOP

9

E ECE ILLINOIS

; check for overflow (when stack is full: STACK TOP < STACK END)

; store value (in RO) to stack, update STACK TOP

; indicate the overflow condition on return
OVERFLOW

; restore modified registers and return
DONE_PUSH

10

E ECE ILLINOIS

