
ECE 220 Computer Systems & Programming
Lecture 18: Problem Solving with Linked List

Exercise: Student Record

typedef struct studentStruct

{

 char *Name;

 int UIN;

 float GPA;

 struct studentStruct *next;

}student;

1. Create a list of 5 students. The last student will take the head position and the first student will take the
tail position. For Name, we will allocate space into the heap based on the given name length.

2. Add a new student to the tail position.
3. Add a new student before a known student
4. Add a new student after a known student
5. Remove a student record from the list.
6. Free up the memory space

5

Data|Next

NULL

Head
Pointer

Data|Next

void insert_head(student **head, student *data)

Add a new student before a known student

Add a new student after a known student

Deleting a Node

Find the node that points to the desired node.
Redirect that node’s pointer to the next node (or NULL).
Free the deleted node’s memory.

int remove_student(student **head, int uin)

Free up the memory allocations: void delete_record(student **head)

Exercise: Create a Sorted Student Record based on GPA

typedef struct studentStruct

{

 char *Name;

 int UIN;

 float GPA;

 struct studentStruct *next;

}student;

1. Create a list of 5 students sorted in descending order according to the GPA
2. Remove a student record from the list.
3. Free up the memory space

5

Data|Next

NULL

Head
Pointer

Data|Next

void insert_sorted_GPA(student **head, student *data)

15

int main(){
 student head;
 head.next = NULL;

 student data;
 data.UIN = 1;

 ...

 insert_head_base(&head, &data);

void insert_head_base(student *headptr, student *data){
 student *temp = (student*) malloc(sizeof(student));
 *temp = *data;
 temp->next = headptr->next;
 headptr->next = temp;

}

void insert_head(student **headpptr, student *data){
 student *temp = (student *) malloc(sizeof(student));
 *temp = *data;
 temp->next = *headpptr;
 *headpptr = temp;

}

int main(){
 student *headptr = NULL;

 student data;
 data.UIN = 0;

 ...

 insert_head(&headptr, &data);

VS

Another way: Using a single pointer

Stack data types
Stack

▪ First item in is the last item out - _______________

▪ Two operations for data movement: ___________ & ___________

Stack can be implemented as a linked list in which

adding and removing elements occurs at the top of the list

 (LIFO)

Functions to add and remove elements from a stack:

push and pop

6

Push for Stack

17

typedef struct StudentStruct{
 int UIN;
 char *netid;
 float GPA;
 struct StudentStruct *next;

}node;Same as insert_head

Pop for Stack

18

Queue data types
Queue

▪ First item in is the first item out - _______________

▪ Two operations for data movement: ___________ & ___________

Queue is a linked list in which adding a new element

occurs at the end of the list and removing an

element occurs at the start of the list.

Functions to add and remove elements:

enqueue and dequeue

Front End

6

void enqueue(node **headpptr, node *data)

void dequeue(node **headpptr)

Example: doubly LinkedList and its runtime stack

typedef struct dll_node_t {

 int val;

 struct dll_node_t *next;

 struct dll_node_t **prev;

} dll_node;

int main()

{

 dll_node *head = NULL;;

 dll_insert_sorted(&head, 3);

 dll_insert_sorted(&head, 1);

 dll_insert_sorted(&head, 2);
}

/* add to the doubly linked list */

void dll_insert_sorted(dll_node **head, int v)
{
 dll_node *tmp = malloc(sizeof(*tmp));
 tmp->val = v;

while (*head && ((*head)->val < v))
head = &((*head)->next);

tmp->next = *head;
if (*head)

(*head)->prev = &(tmp->next);
tmp->prev = head;
*head = tmp;

}

1

2

3

Node 0 (val=1) Node 1 (val=2) Node 2 (val =3)

NULL

Head
Pointer

&head

/* add to the doubly linked list */

void dll_insert_sorted(dll_node **head, int v)
{
 dll_node *tmp = malloc(sizeof(*tmp));
 tmp->val = v;

while (*head && ((*head)->val < v))
head = &((*head)->next);

tmp->next = *head;
if (*head)

(*head)->prev = &(tmp->next);
tmp->prev = head;
*head = tmp;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Push for Stack
	Slide 18: Pop for Stack
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

