ECE 220 Computer Systems & Programming

Lecture 21 — Introduction to C++: Inheritance & Polymorphism
November 11, 2025

* Quiz5 is next week 1L ILLINOIS

Electrical & Computer Engineering
GRAINGER COLLEGE OF ENGINEERING

Pass by Value / Address (Pointer) / Reference in C++

Let’s look at our most familiar swap example.

1. Pass by value

void swap val (int x, 1Int y); volid swap ptr(int *x, 1int *y) {
int temp = *x;
2. Pass by address (pointer) / *x o= *y;
void swap ptr(int *x, int *y); } *y = temp;
3. Pass by reference
volid swap ref (int &x, int &y);—””" Void.swap_ref(int &, 1nt &y)H{
- int temp = Xx;
int main () { X = Yy
int a = 1; y = temp;
int b = 2; }
swap val(a, Db); //pass by value
swap ptr(&a, &b); //pass by address (pointer)
swap ref (a, b); //pass by reference

return 0O;

) 2

E ECE ILLINOIS

More on C++ Reference

* an alias for a variable/object

e similar to pointer but safer
* no need to dereference, use it just like a variable/object
e should use “” instead of “->” to access members

Copy constructor and pass by constant reference
class vector/{
Protected:
double angle , length ;
public:
//copy constructor
vector (const vector &obj) {
angle = obj.angle ;
length = obj.length ;}
//other methods omitted here for simplicity

ECE ILLINOIS

Inheritance Base Derived

Class Inheritance Class
Public > Public
C++ allows us to define a class based on an
existing class, and the new class will inherit Protected . * Protected
members of the existing class. _ Public
Private
* the existing class —
 the new class — Public \
_ o . _ . . Protected > Protected
Exceptions in inheritance (things not inherited): | Protected
e constructors, destructors and copy Private
constructors of the base class
Public
* overloaded operators of the base class
e friend functions of the base class Protected
_ _ Private . Private
» Are private members in the base class Private
inherited? 4

E ECE ILLINOIS

class orthovector : public wvector/{
protected:
int d ; //direction can be 0,1,2,3, indicating r, 1, u, d
public:
orthovector (int dir, double 1) {

const double halfPI = 1.507963268;

d = dir;
angle = dir*halfPI;
length = 1;
}
orthovector () {d = 0; angle = 0.0; length = 0.0;}

double hypotenuse (const orthovector &b) {
if((d tb.d)%2 == 0) return length + b.length ;
return (sqgrt(length *length + b.length *b.length));

' mmm

Same Class
Derived Class Y Y
Outside Class Y N N

5

E ECE ILLINOIS

Polymorphism

A call to a member function will cause a different function to be executed

depending on the type of the object that invokes the function. In the example
below, function call is determined during (static linkage).

int main () {
Rectangle rec(3,5);

Example: Triangle tri(4,5);

//base class

class Shape { rec.area();
protected: tri.area();
double width , height ; return 0;
public: }
Shape () {width = 0; height = 0;}
Shape (double a, double b) { width = a; height = b; }
double area () { cout << "Base class area unknown” << endl;

return 0; }

}s 6

E ECE ILLINOIS

//derived classes

class Rectangle : public Shape{

public:
Rectangle (double a, double b) : Shape(a,b) {}
double area () {

Y

class Triangle : public Shape/{

public:
Triangle (double a, double b) : Shape(a,b) {}
double area () {

¥

» Which function will be invoked when we execute the code in main?

7

ECE ILLINOIS

Declared Type vs. Actual Type

int main () {
Shape *ptr;
Rectangle rec(3,5);
Triangle tri(4,5);

//use ptr to point to Rectangle class object
ptr = &rec;

ptr->areal() ;

//use ptr to point to Triangle class object
ptr = &tri;

ptr->areal() ;

return 0O;

» What would this program print? 8

E ECE ILLINOIS

Virtual Function

* member functions in the base class you expect to redefine in the derived
classes are called virtual functions

e derived class declares instances of that member function
e function call is determined during (dynamic linkage)

//base class

class Shape/{

protected:

double width , height ;

public:

Shape () {width = 0; height = 0;}

Shape (double a, double b) { width = a; height = b; }

virtual double area() {

cout << “Base class area unknown” << endl;
return 0; }

ECE ILLINOIS

Virtual Function Table (vtbl)

e stores pointers to all virtual functions
e created for each class that uses virtual functions
* |ookup during the function call

» Where are things being stored at?

Program Text (Code Segment)

Data (Static, Global, etc.)

Heap

Stack

10

E ECE ILLINOIS

Pure Virtual Functions & Abstract Class

class Shape{ //Shape is an abstract class

protected:

double width , height ;

public:

Shape (double a, double b) { width = a; height = b; }
virtual double area()=0; //pure virtual function

s
int main () {

Shape shapel (2,4); // this will cause a compiler error!

Shape *p shapel; // this is allowed

11

ECE ILLINOIS

More on Abstract Class

e aclass with one or more pure virtual functions is an abstract class, no objects
of that abstract class can be created

e a pure virtual function that is not defined in a derived class remains a pure
virtual function, so the derived class is also an abstract class

e anabstract class is intended as an interface to objects accessed through
pointers and references

12

E ECE ILLINOIS

	Slide 1
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

