ECE 220 Computer Systems & Programming

Lecture 20 — Introduction to C++
November 6, 2025

« MT2 regrade request deadline is this Sunday 1T ILLINOIS

Electrical & Computer Engineering
GRAINGER COLLEGE OF ENGINEERING

The type journey —_—

struct *

struct []

struct, typedef, enum

int *, char *, float *
int[], char[], float][]

int, char, float

2

E ECE ILLINOIS

C++ Class & Encapsulation

C++ was created in 1979 by Bjarne Stroustrup at Bell Labs, as an extension to C.
It’s an object-oriented language

Object-Oriented Programming (OOP) Concepts: C++

Encapsulation, Inheritance, Polymorphism, Abstraction

Class in C++ is similar to Struct in C, except it defines the data structure AND
e control “who” can access that data
* provide functions specific to the class

» Can you spot the differences in C vs. C++ examples for adding two vectors?

3

E ECE ILLINOIS

Concepts Related to Class

An object is an instance of the class
e shares the same functions with other objects of the same class
* but each object has its own copy of the data

Object

Class

4

E ECE ILLINOIS

Concepts Related to Class

Member functions (a.k.a. methods) — functions that are part of a class

Access Control
e private members can only be accessed by member functions (default access)

e public members can be accessed by anyone

Special Member Functions

e constructor: a special function that is automatically invoked to a
new object and its data members.

e destructor: a special function that is automatically invoked to an
object (and clean up resources) when it goes outside of scope or is explicitly
deleted.

5

E ECE ILLINOIS

Basic Input / Output

std::cin (standard input stream)
std::cout (standard output stream)
std::endl (insert new-line and flush stream)

namespace
“using namespace” directive tells compiler the subsequent code is using names in
a specific namespace

Example:

#include <iostream>

using namespace std;

int main () {
char name[20];
cout << “Enter your name: ”;
cin >> name;

cout << “Your name is: ” << name << endl;
} 6

E ECE ILLINOIS

Exercise — Writing Constructors
class Rectangle{
int width , height ;
public:
Rectangle () ;
Rectangle (int, 1nt);
int area() const {return width *height ;}
I
Rectangle: :Rectangle () {
//set both width and height to 0

}

Rectangle: :Rectangle(int w, 1int h) {
//set width to w and height to h

} 7

E ECE ILLINOIS

Exercise — Accessing Members in an Object

#include <iostream>

using namespace std;

int main () {
Rectangle rectl (3,4);
Rectangle rect?2;

//print rectl’s area
//print rect2’s area

return 0;

}

» What is the area of object rectl? How about rect2?

» How do we get the width/height of each object? 8

E ECE ILLINOIS

Dynamic Memory Allocation

new: an operator to allocate memory on the heap (similar to malloc in C)

delete: an operator to deallocate heap memory (similar to free in C)

Use delete[] to deallocate an array

Example:
int *ptr;
ptr = new int;

delete ptr;

int *ptr;
ptr = new 1int[10];
delete [] ptr;

9

E ECE ILLINOIS

Exercise — Accessing Objects Through Pointers

#include <iostream>
using namespace std;
int main () {
Rectangle rectl (3,4);
Rectangle *r ptrl = &rectl;
//print rectl’s area through r ptrl

Rectangle *r ptr2 = new Rectangle(5,0);
//print area of rectangle pointed to by r ptr2
1f (r ptr2 != NULL) { }
Rectangle *r ptr3 =

new Rectangle[2] {Rectangle (), Rectangle(2,4)};
//print area of the 2 rectangles in the array
if (r ptr3 != NULL) {

//deallocate memory

return 0O;

} 10

ECE ILLINOIS

Function Overloading

* In C, each function has exactly one type
e C++ allows overloading — multiple implementations for different parameter

types
 Compiler chooses implementation based on the types chosen

Example:
int getmin(int a, 1int b) {

return (a<b)?a:b;

double getmin (double a, double Db) {

return (a<b) ?a:b;

11

E ECE ILLINOIS

Operator Overloading

Redefine built-in operators such as +, -, *, <, >, = in C++ to do what you want

Example:
class vector {
protective:
double angle , length ;
public:
//constructors & other member functions

vector operator + (const vector &b) {

vector c; vector a(l1.5,2);
double ax = length *cos (angle); vector b(2.6,3);
double bx = b.length *cos (b.angle);
double ay = length *sin(angle); //before operator overload
double by = b.length *sin(b.angle); |vector c¢c = a.add(b);
double cx = ax+bx;
double cy = ay+by; //after operator overload
c.length = sqgrt (cx*cx+cy*cy); vector ¢ = a + b;
c.angle = acos(cx/c.length);
return c;}
¥ 12

ECE ILLINOIS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

