ECE 220 Computer Systems & Programming

Lecture 17 — Linked Lists
October 23, 2025

* MT2 HKN review Session: Sunday, 10/26, 3-5pm at 10 ILLINOIS

ECEB 1002 Electrical & Computer Engineering
GRAINGER COLLEGE OF ENGINEERING

Lecture 16 Recap

e “Static” vs. Dynamic Memory Allocation: mechanism, location, lifetime, size

* malloc, free, calloc, realloc
e Memory Leak vs. Segmentation Fault

2

E ECE ILLINOIS

The Linked List Data Structure

A linked list is an ordered collection of nodes, each of which contains some
data, connected using pointers.

e Each node points to the next node in the list.
e The first node in the list is called the
e The last node in the list is called the

Head
Pointer

(Node O)—>(Node 1)—>(Node 2

NULL

3

E ECE ILLINOIS

Array vs. Linked List

Head
Element O :

Pointer
Element 1
Element 2

NULL

Memory Allocation

Memory Structure
Memory Overhead
Order of Access

Insertion/Deletion 4

I ECE ILLINOIS

Example: A List of Student Records

typedef struct studentStruct Node;
struct studentStruct/{
int UIN;
Head

float GPA; Pointer
Node *next; UIN,GPA .3—>(UIN,GPA

}

NULL
We have a list of 200 student records (nodes) sorted by UIN
1. Traverse the list to find a student record by UIN
2. Add a new student record to the sorted list at the correct location
3. Delete a student record from the list
5

E ECE ILLINOIS

Traverse a sorted list to find a student record by UIN

/* If matching UIN is found, print “record found” and return a pointer

to this

node, otherwise print “record not found” and return NULL */

Node *find node (Node *head, int S UIN) {

/* Algorithm */

/* base
list 1is
current

/* base
current

Head
Pointer

case 1: NULL
empty/reach the tail OR
node’s UIN is past the range (record not found) */

case 2:
node’s UIN matches S UIN */

/* recursive case: traverse the remaining list */

ECE ILLINOIS

Add a new student record to a sorted list

/* add a new node to a sorted list at the correct location */
void add node (Node **list, int new UIN, float new GPA) {

| new node |-.

Tea,
0

Head
Pointer

B
ot

/* Algorithm

base case 1: insert new node at ‘head’ NULL
base case 2: UIN already exists

recursive case: traverse the remaining list */

ECE ILLINOIS

Delete an existing student record from a sorted list

/* remove a node from a sorted list */

void remove node (Node **1list, int old UIN) {

Heed _ .
Pointer Y

......
..........
"""""
....

/* Algorithm
base case 1: NULL
empty list OR node with matching UIN not in list (record not found)

base case 2:
found node with matching UIN, redirect pointers and remove node

recursive case: traverse the remaining list */

ECE ILLINOIS

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

