
ECE 220 Computer Systems & Programming

Lecture 17 – Linked Lists

October 23, 2025

• MT2 HKN review Session: Sunday, 10/26, 3-5pm at
ECEB 1002

Lecture 16 Recap

• “Static” vs. Dynamic Memory Allocation: mechanism, location, lifetime, size

• malloc, free, calloc, realloc

• Memory Leak vs. Segmentation Fault

2

The Linked List Data Structure

A linked list is an ordered collection of nodes, each of which contains some
data, connected using pointers.

• Each node points to the next node in the list.

• The first node in the list is called the _______

• The last node in the list is called the _______

Node 0 Node 1 Node 2

NULL

3

Head
Pointer

Array vs. Linked List

Node 0 Node 1 Node 2

NULL

Element 0

Element 1

Element 2

Head
Pointer

Array Linked List

Memory Allocation

Memory Structure

Memory Overhead

Order of Access

Insertion/Deletion
4

Example: A List of Student Records

typedef struct studentStruct Node;

struct studentStruct{

 int UIN;

 float GPA;

 Node *next;

};

We have a list of 200 student records (nodes) sorted by UIN
1. Traverse the list to find a student record by UIN
2. Add a new student record to the sorted list at the correct location
3. Delete a student record from the list

5

NULL

Head
Pointer

UIN,GPA UIN,GPA

Traverse a sorted list to find a student record by UIN
/* If matching UIN is found, print “record found” and return a pointer

to this node, otherwise print “record not found” and return NULL */

Node *find_node(Node *head, int S_UIN){

} 6

/* Algorithm */

/* base case 1:

list is empty/reach the tail OR

current node’s UIN is past the range (record not found) */

/* base case 2:

current node’s UIN matches S_UIN */

/* recursive case: traverse the remaining list */

Add a new student record to a sorted list
/* add a new node to a sorted list at the correct location */

void add_node(Node **list, int new_UIN, float new_GPA){

} 7

/* Algorithm

 base case 1: insert new node at ‘head’

 base case 2: UIN already exists

 recursive case: traverse the remaining list */

Delete an existing student record from a sorted list
/* remove a node from a sorted list */

void remove_node(Node **list, int old_UIN){

} 8

/* Algorithm

 base case 1:

 empty list OR node with matching UIN not in list (record not found)

 base case 2:

 found node with matching UIN, redirect pointers and remove node

 recursive case: traverse the remaining list */

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

