
ECE 220 Computer Systems & Programming

Lecture 16 – Dynamic Memory Allocation

October 21, 2025

• DRES-TAC final exam priority deadline: Nov. 1st

Lecture 15 Recap

• Enum

• Struct vs. Union

• Size of struct (padding vs. no padding)

• Access member through a variable vs. through a pointer

• Pointer to struct

• Struct arrays

• Struct pass by value vs. pass by reference

• Struct within a Struct

2

“Static” vs. Dynamic Memory Allocation

“Static” Dynamic

Mechanism of allocation

Lifetime of memory

Location of memory

Size of allocation
3

malloc & free

void *malloc(size_t size);

• allocates a contiguous region of memory on the heap

• size of allocated memory block is indicated by the argument

• returns a generic pointer (of type void *) to the memory, or NULL in case of
failure

• allocated memory is not clear (there could be left over junk data!)

void free(void *ptr);

• frees the block of memory pointed to by ptr

• ptr must be returned by malloc() family of functions

4

Examples using malloc & free

int *ptr = (int *)malloc(sizeof(int));

if(ptr == NULL){

 printf(“ERROR - malloc failure!”);

 return 1;}

*ptr = 10;

free(ptr);

➢ How can we dynamically allocate space for an integer array with 10 elements?

➢ What is happening in this block of code?

int *ptr = (int *)malloc(sizeof(int));

*ptr = 5;

int *ptr_2 = (int *)malloc(sizeof(int));

*ptr_2 = 6;

ptr = ptr_2;

5

calloc & realloc

void *calloc(size_t n_items, size_t item_size);

• similar to malloc(), also sets allocated memory to zero
• n_item: the number of items to be allocated, item_size: the size of each item
→ total size of allocated memory = n_items * item_size

void *realloc(void *ptr, size_t size);

• reallocate memory block to a different size (change the size of memory block
pointed to by ptr)

• returns a pointer to the newly allocated memory block (it may be changed)
• Unless ptr == NULL, it must be returned by the malloc() family of functions
• if ptr == NULL → same as malloc()
• if size == 0, ptr != NULL → implementation specific

6

Possible scenarios when using realloc

1. from a zero sized block to a non-zero sized block → same as malloc

2. from a non-zero sized block to a zero sized block → implementation specific

3. from a larger block to a smaller block

4. from a smaller block to a larger block

7

Examples using calloc & realloc

➢ What does this block of code do?

char *ptr2 = (char *)calloc(100, sizeof(char));

if(ptr2 == NULL){

 printf(“ERROR – calloc failure!”);

 return 1;}

strncpy(ptr2, “Example using calloc”, 100);

➢ What is happening now?

char *ptr3 = (char *)realloc(ptr2, 200*sizeof(char));

if(ptr3 == NULL){

 printf(“ERROR – realloc failure!”);

 return 1;}

➢ How much memory are we deallocating here?

free(ptr3); 8

Exercise:

typedef struct studentStruct{

 char *NAME;

 int UIN;

 float GPA;

}student;

1. Dynamically allocate memory for 200 student records

2. Initialize name to “To be set”, UIN to -1 and GPA to 0.0 for all 200 records
(hint: you will also need to allocate an array of 100 chars to hold the
name for each record)

3. Add 200 more student records and initialize them as in step 2

4. Free up memory space for all the records

9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

