ECE 220 Computer Systems & Programming

Lecture 16 — Dynamic Memory Allocation
October 21, 2025

 DRES-TAC final exam priority deadline: Nov. 15t 10 ILLINOIS

Electrical & Computer Engineering
GRAINGER COLLEGE OF ENGINEERING



Lecture 15 Recap

* Enum

e Struct vs. Union

e Size of struct (padding vs. no padding)

* Access member through a variable vs. through a pointer
* Pointer to struct

* Struct arrays

e Struct pass by value vs. pass by reference

e Struct within a Struct

2

E ECE ILLINOIS



“Static” vs. Dynamic Memory Allocation

System space

Program text
Global data section

Heap

}
1

Run-time stack

System Space

I T R

Mechanism of allocation

Lifetime of memory

Location of memory

Size of allocation 5

E ECE ILLINOIS



malloc & free

void *malloc(size t size);
* allocates a contiguous region of memory on the heap
* size of allocated memory block is indicated by the argument

* returns a generic pointer (of type void *) to the memory, or NULL in case of
failure

* allocated memory is not clear (there could be left over junk data!)
void free (void *ptr);

e frees the block of memory pointed to by ptr

e ptr must be returned by malloc() family of functions

4

E ECE ILLINOIS



Examples using malloc & free

int *ptr = (int *)malloc(sizeof (int));
1f (ptr == NULL) {
printf ("ERROR - malloc failure!”);
return 1;}
*ptr = 10;
free(ptr) ;

» How can we dynamically allocate space for an integer array with 10 elements?

» What is happening in this block of code?

int *ptr = (int *)malloc(sizeof (int));
*ptr = 5;

int *ptr 2 = (int *)malloc(sizeof (int));
*ptr 2 = 6;

ptr = ptr 2;
5

E ECE ILLINOIS



calloc & realloc

void *calloc(size t n items, size t item size);

e similar to malloc(), also sets allocated memory to zero

* n_item: the number of items to be allocated, item_size: the size of each item
—> total size of allocated memory = n_items * item_size

void *realloc(void *ptr, size t size);

* reallocate memory block to a different size (change the size of memory block
pointed to by ptr)

* returns a pointer to the newly allocated memory block (it may be changed)

e Unless ptr == NULL, it must be returned by the malloc() family of functions

e if ptr == NULL = same as malloc()

* ifsize ==0, ptr |= NULL = implementation specific

6

E ECE ILLINOIS



Possible scenarios when using realloc

1. from a zero sized block to a non-zero sized block - same as malloc
2. from a non-zero sized block to a zero sized block = implementation specific
3. from a larger block to a smaller block

4. from a smaller block to a larger block

7

E ECE ILLINOIS



Examples using calloc & realloc

» What does this block of code do?
char *ptr2 = (char *)calloc (100, sizeof (char)):;
if (ptr2 == NULL) {

printf ("ERROR - calloc failure!”);

return 1;}

strncpy (ptr2, “Example using calloc”, 100);

» What is happening now?
char *ptr3 = (char *)realloc(ptr2, 200*sizeof (char));
1f (ptr3 == NULL) {

printf ("ERROR — realloc failure!”);

return 1;}

» How much memory are we deallocating here?
free (ptr3); 3

E ECE ILLINOIS



Exercise:

typedef struct studentStruct{
char *NAME;
int UINj;
float GPA;

} student;

1. Dynamically allocate memory for 200 student records

2. Initialize name to “To be set”, UIN to -1 and GPA to 0.0 for all 200 records
(hint: you will also need to allocate an array of 100 chars to hold the

name for each record)
3. Add 200 more student records and initialize them as in step 2

Free up memory space for all the records

9

E ECE ILLINOIS



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

