ECE 220 Computer Systems & Programming

Lecture 14 - File 1/0O
October 14, 2025

* Quiz4 should be completed @ CBTF by Wednesday E ILLINOIS

Electrical & Computer Engineering
GRAINGER COLLEGE OF ENGINEERING

Recursion with Backtracking Summary

You are presented with some options to solve a problem; you choose one and then a new
set of options emerge. This procedure repeats. If you made a sequence of “good” choices,
then eventually you will reach the goal state. If you didn’t, then you need to backtrack to
unmake previous choice(s) to reach the goal state.

Our goals:

1. Looking for a solution

2. Looking for all solutions

3. Looking for the best solution

Examples:
e Sudoku
e N-Queen

* Permutation

* Maze
2

E ECE ILLINOIS

Input / Output Streams

Input
‘ Device H”" ASCIl Stream scanf (“$d”, &x)

I/O Device operates using In C, we abstract away the 1/0
1/0 protocol (such as memory mapped 1/0) details to an 1/0 function call

3

E ECE ILLINOIS

Stream Abstraction for I/O

All character-based I/O in Cis performed on text streams.
A stream is a sequence of ASCII characters, such as:

e the sequence of ASCII characters printed to the monitor
by a single program

* the sequence of ASCII characters entered by the user
during a single program

* the sequence of ASCII characters in a single file
Characters are processed in the order in which they were added to the stream.

e e.g., aprogram sees input characters in the same order
as the user typed them

Standard Streams:

Input (keyboard) is called stdin.
Output (monitor) is called stdout.
Error (monitor) is called stderr. 4

E ECE ILLINOIS

Stream Buffering

‘ Input
Device

”l” ASCII Stream Program

Input device is the producer; Program is the consumer

We want producer and consumer to be operating independently
Why??? Think Netflix over spotty internet connection

We can accomplish that via buffering

5

E ECE ILLINOIS

Simple Buffer

FRONT
(location just before the “first” element)

-

* Producer adds data at REAR

 Consumer removes data from
® | 06| O FRONT

* Concept of circular buffer
* Buffer Full?

‘ REAR * Buffer Empty?

(location of the most . Also called First in, First Out

recent element) (FIFO) or Queue

<€ —>
Buffer Size

6

E ECE ILLINOIS

1/0 Functions in C

The standard 1/0 functions are declared in the <stdio.h> header file.

Function

putchar
getchar
printf
scanf
fopen
fclose
fprintf
fscanf
fgetc
fputc
fgets
fputs

EOF & feof

E ECE ILLINOIS

Description

Displays an ASCII character to the screen.
Reads an ASCII character from the keyboard.
Displays a formatted string.

Reads a formatted string.

Open/create a file for 1/0.

Close a file for 1/0.

Writes a formatted string to a file.

Reads a formatted string from a file.
Reads next ASCII character from stream.
Writes an ASCII character to stream.
Reads a string (line) from stream.

Writes a string (line) to stream.

End of file

7

How to use these I/O functions

/* Open/create a file for 1/0 */

FILE* fopen(char* filename, char* mode) /* mode: “r”, “w”, “@”, “r+“, “w+“, “a+“ */

’

success-> returns a pointer to FILE
failure-> returns NULL

/* Close a file for 1/O */
int fclose(FILE* stream)
success-> returns O
failure-> returns EOF (Note: EOF is a macro, commonly -1)

/* Writes a formatted string to a file */

int fprintf(FILE* stream, const char* format, ...)
success-> returns the number of characters written
failure-> returns a negative number

/* Reads a formatted string from a file */
int fscanf(FILE* stream, consta char* format, ...)

success-> returns the number of items read; O, if pattern doesn’t match
failure-> returns EOF

ECE ILLINOIS

/* Reads next ASCII character from stream */
int fgetc(FILE* stream)
success-> returns the character read
failure-> returns EOF and sets end-of-file indicator

/* Writes an ASCII character to stream */

int fputc(int char, FILE* stream)
success-> write the character to file and returns the character written
failure-> returns EOF and sets end-of-file indicator

/* Reads a string (line) from stream */

char* fgets(char* string, int num, FILE* stream)
success-> returns a pointer to string
failure-> returns NULL

/* Writes a string (line) to stream */

int fputs(const char® string, FILE* stream)
success-> writes string to file and returns a non-negative value
failure-> returns EOF and sets the end-of-file indicator

/* checks end-of-file indicator */

int feof(FILE* stream)
if at the end of file-> returns a non-zero value
if not -> returns O

ECE ILLINOIS

/* File I/O Example */
#include <stdio.h>
int main () {

FILE *file;

char buffer[100];

/* */

file = fopen("intro.txt", "w");

/* */
printf ("Write a self introduction with less than 100 characters: ");
fgets (buffer, 100, stdin);

/* */
fputs ("Your self introduction: ", file);
fputs (buffer, file);

fclose(file) ;

/* */
fputs (buffer, stdout);

return O;

} 10

ECE ILLINOIS

Exercise: Read an mxn matrix from file in_matrix.txt and write its transpose to file
out_matrix.txt. The first row of the file specifies the size of the matrix.

Hint: use fscanf to read from a file and use fprintf to write to a file.

#include <stdlib.h>

#include <stdio.h> In_matrix.txt

int main() { 23
FILE *in file, ; 123
FILE *out file; 456

/* open in matrix.txt for read */

in file = fopen("in matrix.txt", "r");

if (in_file == NULL) i
return -1;

/* read matrix dimensions from file */ out_matrix.txt

int m, n, r, c; 32
fscanf(in file, "%d %d", &m, é&n); 14
/* dynamically allocate memory to store in matrix */ 25
int *in matrix = (int *)malloc(m*n*sizeof (int)) ; 36

/* read in matrix elements from file */

11

ECE ILLINOIS

/* close in matrix.txt */

/* open out matrix.txt for write */
out file = fopen("out matrix.txt", "w");
if (out file == NULL)

return -1;

/* write out matrix dimensions to file */
fprintf (out file, "%d %d\n", n, m);

/* write out matrix elements to file *x /

/* close out matrix.txt */

/* deallocate memory */
free(in matrix);
return O;

12

ECE ILLINOIS

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

