
Programming Concepts & Data Structure 

from the Bottom-up

Part 1: LC-3

o Assembly language programming & process

o Memory-mapped I/O: input from keyboard, output to monitor

o TRAPs & Subroutines, Interrupts & Exceptions

o Stacks

Part 2: C 

o Built-in data types, operators, scope

o Functions & run-time stack

o Pointers & arrays

o Recursion: searching, sorting, backtracking

o I/O: streams and buffers, read from / write to file

o User-defined data types: enum, struct, union

o Dynamic memory allocation

o Linked data structures: linked list (stack, queue) & trees

Part 3: C++

o Class (encapsulation, inheritance, abstraction)

o Pass by value /(const) reference / address

o Virtual function, operator overload, template (polymorphism)



Part 1: LC-3 Review

• Address space: 216 locations, addressability: 16 bits

• General-purpose registers: R0, R1, … R7

• Special-purpose register: PC, IR

• Input from keyboard: KBDR/KBSR

• Output to monitor: DDR/DSR

• Operate instructions: ADD, AND, NOT

• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

• Control instructions: BR, JSR/JSRR, JMP, RET, TRAP, RTI

• Condition codes: N (negative), Z (zero), P (positive)

• TRAPs: In, GETC, OUT, PUTS (uses R0; R7 is modified after call)

• Subroutines: callee-save vs. caller-save, nested subroutine needs to save R7

• Interrupts: external event, supervisor vs. user stack, RTI instruction

• Exceptions: internal event for handling errors

• Stack: FILO, overflow, underflow, R6 – stack ptr, R5 – frame ptr



Part 2: C Review

• Scope: local vs. global variables (determined by location of declaration)

• Storage class: static (retains value, global data area) vs. automatic (stack)

• Control structures: conditionals (if, if-else, switch); loops (for, while, do-while)

• Functions & run-time stack (C to LC-3)

• Pointer: address of a variable in memory

• Array: a list of values arranged sequentially in memory

• Pass by value vs. pass by reference (pointer)

• Pointer Array Duality (int array[10] = {1,2,3,4,5,6,7,8,9}; int *ptr = array;)

• Recursion: base case(s) and recursive case(s)

• File I/O: fopen, fclose, fscanf, fprintf

• Linked lists & trees (pointer, struct, dynamic memory allocation)



Part 3: C++ Review

• Class vs. Struct: 4 features of OOP

• Dynamic memory allocation/deallocation: new, delete

• Basic I/O: std, cin, cout

• Pass by value vs. pass by address vs. pass by (const) reference

• Operator and function overloading

• Base class & derived Class: access identifier (public, protected, private)

• Virtual function and virtual function table: static vs. dynamic binding

• Function and class templates: separate type with container

• Big three: copy ctor (deep vs. shallow copy), dtor, copy assignment operator

• Implicit ‘this’ pointer: a pointer to the invoking object

• Vectors: dynamic arrays, elements are stored in consecutive locations

• Lists: doubly linked lists, elements are allocated individually

• Iterators: mechanism used to minimize an algorithm’s dependency on data 
structure on which it operates


	Slide 5
	Slide 6
	Slide 7
	Slide 8

