ECE 220 Computer Systems & Programming

Lecture 23 – Trees: traversal and search November 19, 2024

- Quiz5 should be taken @ CBTF this week
- Final exam conflict request is due on Wednesday, 12/11

ILLINOIS Electrical & Computer Engineering GRAINGER COLLEGE OF ENGINEERING

Tree Data Structure

Array, linked list (stack, queue) – linear data structures

Tree: a collection of nodes connected by edges. It's a nonlinear data structure.

ECE ILLINOIS

Binary Tree

Each node has *at most 2* children – left child and right child

Which nodes are leaves?

3

ECE ILLINOIS

Tree Traversal – BFS & DFS

Breadth-First Search (level-order)

Depth-First Search

- 1. Pre-order: <u>root</u>, left, right
- 2. In-order: left, <u>root</u>, right
- 3. Post-order: left, right, root

4

Binary Search Tree

ECE ILLINOIS

Traverse a BST

void preorder(node *root) {

typedef struct btNode node; struct btNode{ int data; node *left; node *right; };

}
void inorder(node *root) {

}
void postorder(node *root){

6

Find a Node in BST

}

node *search(node* root, int data){
 /*base cases: 1)"root" is NULL; 2) found node*/

/*recursive cases: search left and right subtrees*/

node *find_min(node *root) { /*find the smallest node in a BST*/

}

node *find_max(node *root) { /*find the largest node in a BST*/

Count the Number of Leaf Nodes in a BST

int leaf_count(node *root) {
 /*base cases: 1)"root" is NULL; 2)"root" is a leaf node*/

Calculate the Height of a BST

int height(node *root) {
 /*base cases: 1) "root" is NULL; 2) "root" is a leaf node*/

}