
ECE 220 Computer Systems & Programming

Lecture 21 – Introduction to C++: Inheritance & Polymorphism

November 12, 2024

• Quiz5 is next week

Pass by Value / Address (Pointer) / Reference in C++

Let’s look at our most familiar swap example.

1. Pass by value
void swap_val(int x, int y);

2. Pass by address (pointer)
void swap_ptr(int *x, int *y);

3. Pass by reference
void swap_ref(int &x, int &y);

int main(){

 int a = 1;

 int b = 2;

 swap_val(a, b); //pass by value

 swap_ptr(&a, &b); //pass by address (pointer)

 swap_ref(a, b); //pass by reference

}

void swap_ref(int &x, int &y){

 int temp = x;

 x = y;

 y = temp;

}

2

void swap_ptr(int *x, int *y){

 int temp = *x;

 *x = *y;

 *y = temp;

}

More on Reference
• an alias for a variable/object

• similar to pointer but safer

• no need to dereference, use it just like a variable/object

• should use “.” instead of “->” to access members

Copy constructor and pass by constant reference
class vector{

 Protected:

 double angle_, length_;

 public:

 //copy constructor

 vector(const vector &obj){

 angle_ = obj.angle_;

 length_ = obj.length_;}

 //other methods omitted here for simplicity

}; 3

Inheritance

C++ allows us to define a class based on an
existing class, and the new class will inherit
members of the existing class.

• the existing class –

• the new class –

Exceptions in inheritance (things not inherited):

• constructors, destructors and copy
constructors of the base class

• overloaded operators of the base class

• friend functions of the base class

➢ Are private members in the base class
inherited? 4

Public

Protected

Private

Public

Protected

Private

Public

Protected

Private

Public

Protected

Protected

Private

Base
Class

Derived
Class

Inheritance

Public

Protected

Private

class orthovector : public vector{

 protected:

 int d_; //direction can be 0,1,2,3, indicating r, l, u, d

 public:

 orthovector(int dir, double l){

 const double halfPI = 1.507963268;

 d_ = dir;

 angle_ = d*halfPI;

 length_ = l;

 }

 orthovector() {d_ = 0; angle_ = 0.0; length_ = 0.0;}

 double hypotenuse(const orthovector &b){

 if((d_+b.d_)%2 == 0) return length_ + b.length_;

 return (sqrt(length_*length_ + b.length_*b.length_));

 }

};
Access public protected private

Same Class Y Y Y

Derived Class Y Y N

Outside Class Y N N 5

Polymorphism

A call to a member function will cause a different function to be executed
depending on the type of the object that invokes the function. In the example
below, function call is determined during __________________ (static linkage).

Example:
//base class

class Shape{

 protected:

 double width_, height_;

 public:

 Shape() {width_ = 0; height_ = 0;}

 Shape(double a, double b) { width_ = a; height_ = b; }

 double area() { cout << “Base class area unknown” << endl;

 return 0; }

}; 6

int main(){

 Rectangle rec(3,5);

Triangle tri(4,5);

rec.area();

 tri.area();

 return 0;

}

//derived classes

class Rectangle : public Shape{

 public:

 Rectangle(double a, double b) : Shape(a,b){}

 double area() {

 }

};

class Triangle : public Shape{

 public:

 Triangle(double a, double b) : Shape(a,b){}

 double area() {

 }

};

➢ Which function will be invoked when we execute the code in main?

7

Declared Type vs. Actual Type

int main(){

Shape *ptr;

Rectangle rec(3,5);

Triangle tri(4,5);

//use ptr to point to Rectangle class object

ptr = &rec;

ptr->area();

//use ptr to point to Triangle class object

ptr = &tri;

ptr->area();

 return 0;

}

➢ What would this program print? 8

Virtual Function

• member functions in the base class you expect to redefine in the derived
classes are called virtual functions

• derived class declares instances of that member function

• function call is determined during __________________ (dynamic linkage)

//base class

class Shape{

 protected:

 double width_, height_;

 public:

 Shape() {width_ = 0; height_ = 0;}

 Shape(double a, double b) { width_ = a; height_ = b; }

 virtual double area(){

 cout << “Base class area unknown” << endl;

 return 0; }

}; 9

Virtual Function Table (vtbl)

• stores pointers to all virtual functions

• created for each class that uses virtual functions

• lookup during the function call

➢ Where are things being stored at?

10

Program Text (Code Segment)

Data (Static, Global, etc.)

Heap

Stack

Pure Virtual Functions & Abstract Class

class Shape{ //Shape is an abstract class

 protected:

 double width_, height_;

 public:

 Shape(double a, double b) { width_ = a; height_ = b; }

 virtual double area()=0; //pure virtual function

};

int main(){

 Shape shape1(2,4); // this will cause a compiler error!

 Shape *p_shape1; // this is allowed

}

11

More on Abstract Class

• a class with one or more pure virtual functions is an abstract class, no objects
of that abstract class can be created

• a pure virtual function that is not defined in a derived class remains a pure
virtual function, so the derived class is also an abstract class

• an abstract class is intended as an interface to objects accessed through
pointers and references

12

	Slide 1
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

