
ECE 220 Computer Systems & Programming

Lecture 20 – Introduction to C++

November 7, 2024

• MT2 regrade deadline is this Sunday

2

C++ Class & Encapsulation

3

C C++

C++ was created in 1979 by Bjarne Stroustrup at Bell Labs, as an extension to C.
It’s an object-oriented language

OOP Concepts:

Encapsulation, Inheritance, Polymorphism, Abstraction

Class in C++ is similar to Struct in C, except it defines the data structure AND

• control “who” can access that data

• provide functions specific to the class

➢ Can you spot the differences in C vs. C++ examples for adding two vectors?

Concepts Related to Class

An object is an instance of the class

• shares the same functions with other objects of the same class

• but each object has its own copy of the data

4

Concepts Related to Class

Member functions (also called methods) - functions that are part of a class

Private vs. Public members

• private members can only be accessed by member functions (default access)

• public members can be accessed by anyone

Constructors & Destructors
• Constructor – a special member function that ________ (initiates) a new object
• Destructor – a special member function that ________ an object (when it goes

outside of scope)

5

Basic Input / Output

cin – standard input stream
cout – standard output stream

namespace –
“using namespace” directive tells compiler the subsequent code is using names in
a specific namespace (otherwise we need to use std::identifier)

Example:

#include <iostream>

using namespace std;

int main(){

 char name[20];

 cout << “Enter your name: ”;

 cin >> name; //cin.getline(name, sizeof(name));

 cout << “Your name is: ” << name << endl;

} 6

Exercise – Writing Constructors
class Rectangle{

 int width_, height_;

 public:

 Rectangle();

 Rectangle(int, int);

 int area() const {return width_*height_;}

};

Rectangle::Rectangle(){

//set both width_ and height_ to 0

}

Rectangle::Rectangle(int w, int h){

//set width_ to w and height_ to h

} 7

Exercise – Accessing Members in an Object

#include <iostream>

using namespace std;

int main(){

 Rectangle rect1(3,4);

 Rectangle rect2;

 //print rect1’s area

 //print rect2’s area

 return 0;

}

➢ What is the area of object rect1? How about rect2?

➢ How do we get the width/height of each object? 8

Dynamic Memory Allocation

new – operator to allocate memory (similar to malloc in C)

delete – operator to deallocate memory (similar to free in C)

Use delete[] to deallocate an array

Example:

int *ptr;

ptr = new int;

delete ptr;

int *ptr;

ptr = new int[10];

delete [] ptr;

9

Exercise – Accessing Objects Through Pointers
#include <iostream>

using namespace std;

int main(){

 Rectangle rect1(3,4);

 Rectangle *r_ptr1 = &rect1;

 //print rect1’s area through r_ptr1

 Rectangle *r_ptr2 = new Rectangle(5,6);

 //print area of rectangle pointed to by r_ptr2

 if(r_ptr2 != NULL){ }

 Rectangle *r_ptr3 =

 new Rectangle[2]{Rectangle(),Rectangle(2,4)};

 //print area of the 2 rectangles in the array

 if(r_ptr3 != NULL){

 }

 //deallocate memory

 return 0;

} 10

Function Overloading

• In C, each function has exactly one type

• C++ allows overloading – multiple implementations for different parameter
types

• Compiler chooses implementation based on the types chosen

Example:

int getmin(int a, int b){

 return (a<b)?a:b;

}

double getmin(double a, double b){

 return (a<b)?a:b;

}

11

Operator Overloading
Redefine built-in operators such as +, -, *, <, >, = in C++ to do what you want

Example:

class vector {

 protective:

 double angle_, length_;

 public:

 //constructors & other member functions

 …

 vector operator +(const vector &b) {

 vector c;

 double ax = length_*cos(angle_);

 double bx = b.length_*cos(b.angle_);

 double ay = length_*sin(angle_);

 double by = b.length_*sin(b.angle_);

 double cx = ax+bx;

 double cy = ay+by;

 c.length_ = sqrt(cx*cx+cy*cy);

 c.angle_ = acos(cx/c.length_);

 return c;}

};

vector a(1.5,2);

vector b(2.6,3);

//before operator overload

vector c = a.add(b);

//after operator overload

vector c = a + b;

12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

