
ECE 220 Computer Systems & Programming

Lecture 14 – File I/O

October 15, 2024

• Quiz4 should be completed @ CBTF by Wednesday

Recursion with Backtracking Summary

You are presented with some options to solve a problem; you choose one and then a new
set of options emerge. This procedure repeats. If you made a sequence of “good” choices,
then eventually you will reach the goal state. If you didn’t, then you need to backtrack to
unmake previous choice(s) to reach the goal state.

Our goals:

1. Looking for a solution

2. Looking for all solutions

3. Looking for the best solution

Examples:

• Sudoku

• N-Queen

• Permutation

• Maze
2

Input / Output Streams

3

ASCII Stream
Input

Device scanf(“%d”, &x)

I/O Device operates using
I/O protocol (such as memory mapped I/O)

In C, we abstract away the I/O
details to an I/O function call

Stream Abstraction for I/O

All character-based I/O in C is performed on text streams.

A stream is a sequence of ASCII characters, such as:

• the sequence of ASCII characters printed to the monitor
by a single program

• the sequence of ASCII characters entered by the user
during a single program

• the sequence of ASCII characters in a single file

Characters are processed in the order in which they were added to the stream.

• e.g., a program sees input characters in the same order
as the user typed them

Standard Streams:

Input (keyboard) is called stdin.

Output (monitor) is called stdout.

Error (monitor) is called stderr. 4

Stream Buffering

ASCII Stream
Input

Device
Program

• Input device is the producer; Program is the consumer
• We want producer and consumer to be operating independently
• Why??? Think Netflix over spotty internet connection
• We can accomplish that via buffering

5

Simple Buffer

• Producer adds data at Tail

• Consumer removes data
from Head

• Concept of circular buffer

• Buffer Full?

• Buffer Empty?

• Also called First in, First Out
(FIFO) or Queue

Tail
(add new data)

Head
(remove old data)

Buffer Size

6

I/O Functions in C
The standard I/O functions are declared in the <stdio.h> header file.

Function Description

putchar Displays an ASCII character to the screen.

getchar Reads an ASCII character from the keyboard.

printf Displays a formatted string.

scanf Reads a formatted string.

fopen Open/create a file for I/O.

fclose Close a file for I/O.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.

fgetc Reads next ASCII character from stream.

fputc Writes an ASCII character to stream.

fgets Reads a string (line) from stream.

fputs Writes a string (line) to stream.

EOF & feof End of file 7

How to use these I/O functions

/* Open/create a file for I/O */
FILE* fopen(char* filename, char* mode) /* mode: “r”, “w”, “a”, “r+“, “w+“, “a+“ */
 success-> returns a pointer to FILE
 failure-> returns NULL

/* Close a file for I/O */
int fclose(FILE* stream)
 success-> returns 0
 failure-> returns EOF (Note: EOF is a macro, commonly -1)

/* Writes a formatted string to a file */
int fprintf(FILE* stream, const char* format, …)
 success-> returns the number of characters written
 failure-> returns a negative number

/* Reads a formatted string from a file */
int fscanf(FILE* stream, consta char* format, …)
 success-> returns the number of items read; 0, if pattern doesn’t match
 failure-> returns EOF

8

/* Reads next ASCII character from stream */
int fgetc(FILE* stream)
 success-> returns the character read
 failure-> returns EOF and sets end-of-file indicator

/* Writes an ASCII character to stream */
int fputc(int char, FILE* stream)
 success-> write the character to file and returns the character written
 failure-> returns EOF and sets end-of-file indicator

/* Reads a string (line) from stream */
char* fgets(char* string, int num, FILE* stream)
 success-> returns a pointer to string
 failure-> returns NULL

/* Writes a string (line) to stream */
int fputs(const char* string, FILE* stream)
 success-> writes string to file and returns a non-negative value
 failure-> returns EOF and sets the end-of-file indicator

/* checks end-of-file indicator */
int feof(FILE* stream)
 if at the end of file-> returns a non-zero value
 if not -> returns 0 9

/* File I/O Example */

#include <stdio.h>

int main(){

FILE *file;

char buffer[100];

/* */

file = fopen("intro.txt", "w");

/* */

printf("Write a self introduction with less than 100 characters: ");

fgets(buffer, 100, stdin);

/* */

fputs("Your self introduction: ", file);

fputs(buffer, file);

 fclose(file);

 /* */

 fputs(buffer, stdout);

 return 0;

} 10

Exercise: Read an mxn matrix from file in_matrix.txt and write its transpose to file
out_matrix.txt. The first row of the file specifies the size of the matrix.

Hint: use fscanf to read from a file and use fprintf to write to a file.

11

#include <stdlib.h>

#include <stdio.h>

int main(){

FILE *in_file, ;

FILE *out_file;

/* open in_matrix.txt for read */

 in_file = fopen("in_matrix.txt", "r");

 if(in_file == NULL)

return -1;

/* read matrix dimensions from file */

int m, n, r, c;

fscanf(in_file, "%d %d", &m, &n);

/* dynamically allocate memory to store in_matrix */

int *in_matrix = (int *)malloc(m*n*sizeof(int));

 /* read in_matrix elements from file */

2 3
1 2 3
4 5 6

in_matrix.txt

3 2
1 4
2 5
3 6

out_matrix.txt

/* close in_matrix.txt */

 /* open out_matrix.txt for write */

 out_file = fopen("out_matrix.txt", "w");

 if(out_file == NULL)

return -1;

/* write out_matrix dimensions to file */

fprintf(out_file, "%d %d\n", n, m);

 /* write out_matrix elements to file */

 /* close out_matrix.txt */

 /* deallocate memory */

 free(in_matrix);

 return 0;

} 12

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

