
ECE 220 Computer Systems & Programming

Lecture 13 – Recursion with backtracking, C to LC-3 Conversion

October 10, 2024

• Quiz4 is next week
• MT2 study materials posted
• Informal Early Feedback

Recursion Recap

• Solving a problem by calling itself on smaller pieces of data

• Must have at least 1 base case and at least 1 recursive case

• Similar to recurrence (using loops) but can result in simpler implementation

• Can incur heavy overhead on the Run-Time Stack (Good vs. Bad Recursion)

2

Recursion with Backtracking: n-Queen Problem

1. Find a safe column (from left to right) to place a queen, starting at row 0;
2. If we find a safe column, make recursive call to place a queen on the next row;
3. If we cannot find one, backtrack by returning from the recursive call to the

previous row and find a different column.

3

0 1 2 3

0 Q

1 Q

2 Q

3 Q

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

Example: 4x4 n-Queen

row 0:

row 1:

row 2:

4

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Backtrack
to row 1 and
make a new
choice:

row 2:

row 3:

Backtrack
to row 2 and
make a new
choice:

Q

Q

5

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(Backtrack to row 1,
but no columns left)
Backtrack to row 0
and make a new
choice:

row 1:

row 2:

row 3: 6

Q Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

/* isSafe() is a helper function to check whether it’s safe to place a queen at board[row][col].
 If it’s safe, return 1; otherwise, return 0. */
int isSafe(int board[N][N], int row, int col){

} 7

Recursion with Backtracking Template

bool solve (configuration conf){

 if (no more choices) /*base case*/

 return (config is goal state);

 for(all available choices){

 try one choice c;

 /*recursively solve after making choice*/

 ok = solve(config with choice c made);

 if (ok)

 return true;

 else

 unmake choice c;

 }

 return false; /*tried all choices and no solution found*/

} 8

int nqueen(int board[N][N], int row){

 /*base case - reach solution, no more rows to place queen*/

 if()

 return 1;

 /*recursive case with backtracking*/

 int c;

 for(c=0;____________;c++){ /*find a safe col to place queen*/

 /*if col ‘c’ is safe, place queen here and then solve

 subsequent steps recursively*/

 if(isSafe() == 1){

 board[][] = 1;

 /*continue to solve the next step*/

 if(nqueen() == 1)

 return 1;

 /*could not solve subsequent steps, backtrack*/

 board[][] = 0;

 }

 }

 return________;

} 9

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

