University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 101: Exploring Digital Information Technologies for Non-Engineers	
Speech and Natural Language	

Today's Topic: Speech and Language

${ }^{\circ}$ Biscuit vs. Biscuit

${ }^{\circ}$ whatchamacallit I put the thingamabob inside the whatchamacallit, turned the doohickey and the wuteveritis still doesn't work. Any idea's?
© 2022 Steven S. Lumetta and Romit Roy Choudhury. All rights reserved.

What are the Steps in Our Cycle?

Let's start by thinking about the cycle: sense, compute, actuate, communicate.
Consider a voice-controlled smart home (or an online assistant).

What is being sensed when interacting with the homeowner?
A human voice, captured by a mic.

Computing Steps in Voice Response

Consider a voice-controlled smart home (or an online assistant).
Computing:

1. get rid of noise: other voices, music, television, video games, pets, and so forth
2. perform "voice recognition": translate an audio signal into a sequence of words.
3. understand what the human is trying to communicate: process their natural language (English, for example).

ECE 101: Computing Technologies and the Internet of Things $\quad 2022$ Steven S. Lumetta and Romit Roy Choudhury. All rights reserved.

Unauthorized Voices Can be Treated as Noise

Noise today may also include unauthorized voices.

By parametrizing the range of frequencies, speeds, and accents for human speech in a given language,
${ }^{\circ}$ modern systems are able to record a voiceprint (a set of parameter values) and
${ }^{\circ}$ verify that the speaker is authorized to make use of the system.

Noise will Always Impair the Process

Step 1: get rid of noise

This task is becoming
THE IBM 2006 GALE ARABIC ASR SYSTEM feasible, but controlled environments are always easier, and results better. In 2006, IBM transcribed news from Al Jazeera: formal tone, little/no background noise, intended for clarity, prosaic content-not poems (I asked! No such luck at that point).

Daniel Povey, Lidia Mangu, Brian Kingsthuuy, Jef Kuo, Mohamed Omar and Geoffrey Zweig IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598

Voice Recognition Success Depends Strongly on Context
Step 2: voice recognition
The context matters here, too.
Recognizing "zero" to "nine" in clear, crisp, and unaccented speech has been possible for decades.
Understanding a non-native speaker who mispronounces words and abuses grammar on an unknown topic is still years away on edge devices.

Variations of Speech Affect Success

Success depends on several aspects.

- How many words in the vocabulary?
- Do speakers need to enunciate clearly
(Didja getdat?)?
- Are euphemisms and idioms allowed ("passed away" instead of "died")?
- How precisely must speakers use grammar?
- Are different accents handled?

It's easier to provide support for multiple
languages than to understand the vast number of
pidgin languages that humans develop
spontaneously as they learn new languages.

Hierarchical Models Share Information

Modern voice recognition uses a hierarchy of interacting, probabilistic models.

In the 90 s and 00 s , these systems
made rapid progress.
The secret?
Quantify success to enable competition!
For example, sequences of three words transcribed correctly.
Machine learning is now used to solve specific sub-problems.

Processing from the Nouns Up

Step 3: natural language processing (NLP)-
understanding what the human meant

The most basic form is keyword search.

What does a human want to see when they type "Ukraine" into Google?

Interrogative Adverbs Add Clarity ... Sometimes
What if we start to add grammatical elements?
what Ukraine
where Ukraine
when Ukraine
how Ukraine
why Ukraine

Even Full Sentences May be Ambiguous in Meaning

Or more complete questions...

Why is Putin in Ukraine?
[Do they mean the Russian army? A simple answer or a feasible explanation of the rationale?]
How long has Russia been in Ukraine?
[Again, the army? Or a history of the Soviet Union?
Or an older history?]
Understanding human sentences is pretty hard.

Natural Language Models are Complex and Expensive

Natural language processing today uses a combination of probabilistic inference and machine learning.
One study* estimated that training a modern NLP model releases as much carbon as manufacturing and using five cars for their entire lifetimes.

* E. Strubell, A. Ganesh, A. McCallum, "Energy and Policy

Considerations for Deep Learning in NLP," 57 th Annual Meeting
of the Association for Computational Linguistics, 2019.

IBM Watson: Jeopardy Champion through Web Crawling

In 2011, IBM Watson

- became the world champion of Jeopardy,
- a game in which a host gives an answer
to a question of the form, "What is X?"
Example: "To marry Elizabeth, Prince Philip had to renounce claims to this southern European country's crown."

The question?
"What is Greece?"
To compete, Watson crawled the web and built a knowledge base from which it could draw answers.

Let's Learn Some Probability Tools

To better understand the ideas in voice recognition and NLP, let's talk about using probabilities to make good guesses.

Probabilities are always more fun as games...

Rules for 20 Questions
Have you played 20 Questions?
${ }^{\circ}$ One person picks a "thing."
${ }^{\circ}$ Others ask twenty yes/no questions
(the first is allowed to have three answers:
animal, vegetable, or mineral?).
${ }^{\circ}$ First person to guess the "thing" wins
("Is it a 'thing?" Yes!).
${ }^{\circ}$ Picker wins if no one guesses within 20 questions.

Here's a Sample Game
Question 1: Animal, vegetable, or mineral?
Answer: Animal.
Question 2: Is it bigger than a dog?
????? Which dog ?????

18

Need Intuition about Dogs to Answer the Question!
To answer, we have to think ...
${ }^{\circ}$ What's the typical size of a dog?
${ }^{\circ}$ What's the typical size of a thing?
${ }^{\circ}$ How likely is a thing to be bigger than a dog?

A Similar Question of Imagination

Similarly, say I tell you,
"The dog knocked over the child."
In your imagination, how big is the dog?
(Perhaps you want to know the child's age?)

Our Brains Use Probability ... Minds ... Maybe Not
How do we come up with probabilities based on observed facts?

Humans are generally pretty bad
${ }^{\circ}$ at reasoning consciously about probability
${ }^{\circ}$ AND at using probability subconsciously.

But our brains are reasonably good at using probability unconsciously for language.

Estimate Highly Biased by Experience

What if we ask two people:
how big is an average dog?
${ }^{\circ}$ Pat, who grew up in an apartment
in downtown Chicago, and
${ }^{\circ}$ Jan, who grew up on a farm?
Pat will probably give a
smaller size than Jan.

```
Why?
```

Their experience with dogs is likely to differ.

In many problems, however, we must
estimate values based on observations.

Probabilities are not invertable:

${ }^{\circ}$ if I tell you that I flipped a coin,

- and the result was "tails,"*
${ }^{\circ}$ what can you say about my coin?
Only that one side is marked
as "tails"-not two "heads".
*For those who grew up without coins: "heads" means the side with a person's head, and "tails" means the other side.
Most coins in most countries allow this distinction.

MLE: Explanation Most Likely to Lead to Observation

To address this issue,
${ }^{\circ}$ people often use a technique called
${ }^{\circ}$ maximum likelihood estimation (MLE).

Given an observation,
${ }^{\circ}$ choose the explanation that is
${ }^{\circ}$ most likely to produce the observation.

Applying MLE in Casino: Watch and Learn

In casinos, for example...
${ }^{\circ}$ people think that slot machines
pay at different rates.
${ }^{\circ}$ One machine may pay more
money more often than another.
${ }^{\circ}$ So they stand and watch other people play.
If one machine pays 10 times out of 100
plays, and a second machine pays
5 times out of 100 plays, the person

Likelihood Used to Estimate Win Probabilities

Why?

They are applying primitive MLE!
Assume each play is random, but
${ }^{\circ}$ first machine pays with probability P_{1}, and
${ }^{\circ}$ second machine pays with probability P_{2}.
If one sees 100 plays on a machine,
${ }^{\circ}$ and the machine pays N times,
${ }^{\circ}$ probability $\mathrm{N} / 100$ is most likely for that machine.

Compare the Frequency of Payouts to Pick a Machine
If first machine pays X times, $\mathrm{P}_{1}=\mathrm{X} / \mathbf{1 0 0}$.
If second machine pays Y times, $\mathrm{P}_{2}=\mathrm{Y} / \mathbf{1 0 0}$.
So $\mathrm{X}>\mathrm{Y}$ implies P_{1} is probably $>$ than P_{2} !

Most gamblers

${ }^{\circ}$ couldn't explain why at this level of detail
${ }^{\circ}$ let alone prove the MLE claims.

Here's a Easy Game to Play
Let's think about another game.

Pat will roll either
${ }^{\circ}$ one (six-sided) die or
${ }^{\circ}$ two dice and add up the numbers.
Then Pat tells us the amount rolled.

> Can we guess whether Pat rolled one or two dice?

Some Cases are Easy, but Others are Hard

Some cases are easy.
For example, Pat rolled an 11. One or two dice?
Pat rolled a 1. One or two dice?

Other cases are harder...
Pat rolled a 4. One or two dice?

Calculate the Chance of a 4 for Each Choice

Let's imagine that Pat rolled one die.
What is the chance that Pat rolled a 4?

1 in 6

Now imagine that Pat rolled two dice.
What is the chance that Pat rolled a 4 (total)?

$$
1+3,2+2, \text { or } 3+1
$$

3 in 36 (same as 1 in 12)

Conditional Probabilities: Chances in Specific Conditions

"If Pat rolls one die" is a condition.
In math and engineering,
${ }^{\circ}$ we call such probabilities
${ }^{\circ}$ conditional probabilities
${ }^{\circ}$ and we write them this way:
probability (get a 4 | Pat rolls one die)
The meaning is the same:
if Pat rolls one die, Pat gets a 4.

Did We Compute the Wrong Values?

But that's NOT what we wanted to know!
We wanted to compare
probability (Pat rolled one die AND got a 4)
with
probability (Pat rolled two dice AND got a 4)

What can we do?

Apply Bayes' Theorem to Find Our Answer

So to find

probability (Pat rolled one die AND got a 4),
we compute
probability (Pat rolled one die)
probability (got a 4 | Pat rolled one die)
We know the second number: $1 / 6$
But how can we know how Pat makes decisions?
We can't. Pat is a fictional character!

Bayes' Theorem to the Rescue

Fortunately, we can make use of a famous fact about probability called Bayes' Theorem:
probability (A AND B) =
probability (A) • probability (B|A)

The chance of A and B both happening is equal to the product of the chance of A happening and the chance of B happening if A has happened.

Assume Equal Chance of Both Options

In such cases, we often assume that all such events are equally likely.
It's a dumb assumption.
But what else can we do?
In that case, our earlier comparison makes sense
$1 / 2 \cdot$ probability (got a 4 | Pat rolled one die)
$=1 / 2 \cdot 1 / 6=1 / 12$
$1 / 2 \cdot$ probability $\underset{=1 / 2 \cdot 1 / 12}{(\text { got a }} 4$ | Pat rolled two dice)

Initial Probabilities are Important to Correct Choices

What if Pat tells us that
probability $($ Pat rolls one die $)=1 / 4$ and
probability (Pat rolls two dice) $=3 / 4$?
In that case, our guess changes, as
1/4 \cdot probability (got a $4 \mid$ Pat rolled one die)
$=1 / 4 \cdot 1 / 6=1 / 24$
$<$
3/4. probability (got a $4 \mid$ Pat rolled two dice) $=3 / 4 \cdot 1 / 12=1 / 16$

Recognizing Digits Also Uses MLE

One can also interpret systems that
we've already seen as examples of MLE:
Given a picture of a digit, which digit most likely produced the picture?
And context (initial probabilities) DOES matter.
What is this number?
And when it's in context?

> The student collapsed,
> so we called 411 .
${ }^{38}$

MLE Solves the Voice Recognition Problem

How is MLE useful in speech recognition?
Voice recognition answers the question,
"Given an audio input, what sequence of words was spoken?"
A solution is generated by finding the sequence of words that is most likely to have generated the audio input.
(Our brains are good with this question.)

MLE Solves the Natural Language Problem

How is MLE useful in NLP?
Natural language processing answers the question, "Given a sequence of words, what did the speaker want to communicate?"
A solution is generated by finding the meaning that is most likely to have generated the
sequence of words.
(Our brains are also good with this question.)

Guessing Words Easier with Words on Both Sides

Understanding how words fit together is an important element. For example, you hear,
"I took my ... [more words]."

What's the next word?

In 1953, journalists* realized that the words
AFTER the missing would help in guessing.
Everyone else already knew.
*W. L. Taylor, "Cloze procedure: A new tool for measuring
readability," Journalism Bulletin, 30(4):415-433, 1953.

Examples of NLP Applications

Classification: How much did a reviewer like a movie? What sentiment did they express? Did they mention or suggest any movie categories?

Interpretation: Is anything in a patient's electronic medical records relevant to the patient's current symptoms? Which sentence in a page of text answers a particular question?
Organization: How are documents and terms related? Which documents are relevant to a given question of interest?

The Last Phase: Communication

Let's close the loop by returning to the cycle: sense, compute, actuate, communicate.

Once a smart home unit has understood a human and performed any necessary actions, it needs to respond verbally
The process is similar and uses similar models:

1. Convert the response into an intelligible sequence of words in the speaker's language.
2. Convert the words into an audio output, a synthetic voice.

Terminology You Should Know from These Slides

${ }^{\circ}$ voice/speech recognition
${ }^{\circ}$ Natural Language Processing (NLP)
${ }^{\circ}$ Maximum Likelihood Estimation (MLE)
${ }^{\circ}$ conditional probability
${ }^{\circ}$ Bayes' Theorem
${ }^{\circ}$ BERT (the bidirectional language model)

Voice Synthesis Allows a "Human" Response

The last step
${ }^{\circ}$ is called voice synthesis, or text to speech,

- generation of human voice from text.

The "voice" can be parametrized
${ }^{\circ}$ and thus tuned to the listener's preferences
${ }^{\circ}$ or to match their verbal style and accent.
Synthesis is also useful
${ }^{\circ}$ for entertainment and accessibility,

- such as reading aloud for the vision-impaired or while humans are busy with other tasks.

Concepts You Should Know from These Slides

${ }^{\circ}$ steps computation: audio \rightarrow noise removal \rightarrow word sequence \rightarrow meaning
${ }^{\circ}$ sources of noise
${ }^{\circ}$ challenging aspects of speech recognition
${ }^{\circ}$ hierarchy of models for speech: phonemes, words, and grammar
${ }^{\circ}$ impact of human experience on probabilistic "reasoning"

- how MLE can be used to solve problems
${ }^{\circ}$ bidirectionality of natural languages

