

Consider a voice-controlled smart home (or an online assistant).

What is being sensed when interacting with the homeowner?

A human voice, captured by a mic.

3

© 2022 Steven S. Lumetta and Romit Roy Choudhury. All rights reserved.

Computing Requires Several Steps

Consider a voice-controlled smart home (or an online assistant). Sense: human voice

What is computed? Here, we may need several steps.

4

© 2022 Steven S. Lumetta and Romit Roy Choudhury. All rights reserved.

Computing Steps in Voice Response

Consider a voice-controlled smart home (or an online assistant).

Computing:

- 1. get rid of noise: other voices, music, television, video games, pets, and so forth.
- **2. perform "voice recognition"**: translate an audio signal into a sequence of words.
- **3. understand** what the human is trying to communicate: process their **natural language** (English, for example).

ECE 101: Computing Technologies and the Internet of Things © 2022 Steven S. Lumetta and Romit Roy Choudhury. All rights reserved

Noise will Always Impair the Process

Step 1: get rid of noise.

This task is becoming feasible, but controlled environments are always easier, and results better.

In 2006, IBM transcribed news from Al Jazeera: formal tone, little/no background noise, intended for clarity, prosaic content—not poems (I asked! No such luck at that point).

THE IBM 2006 GALE ARABIC ASR SYSTEM

Unauthorized Voices Can be Treated as Noise

Noise today may also include unauthorized voices.

By parametrizing the range of frequencies, speeds, and accents for human speech in a given language,

^o modern systems are able to record a voiceprint (a set of parameter values) and
^o verify that the speaker is authorized to make use of the system.

Voice Recognition Success Depends Strongly on Context

Step 2: voice recognition

The context matters here, too.

Recognizing "zero" to "nine" in clear, crisp, and unaccented speech has been **possible for decades**.

Understanding a **non-native speaker** who mispronounces words and abuses grammar **on an unknown topic is** still **years away** on edge devices.

11

Processing from the Nouns Up

Step 3: natural language processing (NLP) understanding what the human meant

The most basic form is keyword search.

What does a human want to see when they type "Ukraine" into Google?

Interrogative Adverbs Add Clarity ... Sometimes What if we start to add grammatical elements? what Ukraine where Ukraine how Ukraine how Ukraine why Ukraine

Even Full Sentences May be Ambiguous in Meaning

Or more complete questions...

Why is Putin in Ukraine?

[Do they mean the Russian army? A simple answer or a feasible explanation of the rationale?]

How long has Russia been in Ukraine?

[Again, the army? Or a history of the Soviet Union? Or an older history?]

Understanding human sentences is pretty hard.

IBM Watson: Jeopardy Champion through Web Crawling

Natural Language Models are Complex and Expensive

Natural language processing today uses a combination of probabilistic inference and machine learning.

One study* estimated that training a modern NLP model releases as much carbon as manufacturing and using five cars for their entire lifetimes.

13

15

*E. Strubell, A. Ganesh, A. McCallum, "Energy and Policy Considerations for Deep Learning in NLP," 57th Annual Meeting of the Association for Computational Linguistics, 2019.

Let's Learn Some Probability Tools

To better understand the ideas in voice recognition and NLP, let's talk about using probabilities to make good guesses.

Probabilities are always more fun as games...

Rules for 20 Questions

Have you played 20 Questions?

° One person picks a "thing."

- Others ask twenty yes/no questions (the first is allowed to have three answers: animal, vegetable, or mineral?).
- First person to guess the "thing" wins ("Is it a 'thing?" Yes!).
- Picker wins if no one guesses within 20 questions.

Here's a Sample Game

17

19

Question 1: Animal, vegetable, or mineral? Answer: Animal. Question 2: Is it bigger than a dog? ????? Which dog ?????

Need Intuition about Dogs to Answer the Question!

To answer, we have to think ...

- ° What's the typical size of a dog?
- ^o What's the typical size of a thing?
- [°] How likely is a thing to be bigger than a dog?

A Similar Question of Imagination

Similarly, say I tell you, "The dog knocked over the child."

In your imagination, how big is the dog?

(Perhaps you want to know the child's age?)

Our Brains Use Probability ... Minds ... Maybe Not

How do we come up with probabilities based on observed facts?

Humans are generally pretty bad • at reasoning consciously about probability • AND at using probability subconsciously.

But **our brains are** reasonably **good at using probability** unconsciously **for language**.

Estimate Highly Biased by Experience

What if we ask two people: **how big is an average dog?**

Pat, who grew up in an apartment in downtown Chicago, and
Jan, who grew up on a farm?

Pat will probably give a smaller size than Jan.

Why?

Their experience with dogs is likely to differ.

21

24

Applying MLE in Casino: Watch and Learn

In casinos, for example... **people think** that slot machines pay at different rates.

One machine may pay more money more often than another.
So they stand and watch other people play.

If one machine pays **10 times out of 100** plays, and a second machine pays **5 times out of 100** plays, the person then sits down at the first machine.

25

Likelihood Used to Estimate Win Probabilities

Why? They are applying primitive MLE! Assume each play is random, but 1 first machine pays with probability P₁, and 2 second machine pays with probability P₂. If one sees 100 plays on a machine, 2 and the machine pays N times, 3 probability N/100 is most likely for that machine.

Compare the Frequency of Payouts to Pick a Machine

If first machine pays **X** times, $P_1 = X/100$.

If second machine pays **Y** times, $P_2 = Y/100$.

So X > Y implies P_1 is probably > than P_2 !

Most gamblers

couldn't explain why at this level of detail let alone prove the MLE claims.

97

Here's a Easy Game to Play

Let's think about another game.

Pat will roll either ° one (six-sided) die or ° two dice and add up the numbers. Then Pat tells us the amount rolled.

Can we guess whether Pat rolled one or two dice?

Some Cases are Easy, but Others are Hard

Some cases are easy. For example, Pat rolled an 11. **One or two dice?** Pat rolled a 1. **One or two dice?**

Other cases are harder... Pat rolled a 4. **One or two dice?**

29

31

Calculate the Chance of a 4 for Each Choice

Let's imagine that Pat rolled one die. What is the chance that Pat rolled a 4? 1 in 6 Now imagine that Pat rolled two dice. What is the chance that Pat rolled a 4 (total)? 1+3, 2+2, or 3+1 3 in 36 (same as 1 in 12)

Choice Most Likely to Report 4 is the Best!

With maximum likelihood estimation, ° we choose "one die" because ° probability (if Pat rolls one die, Pat gets a 4)

probability (if Pat rolls two dice, Pat gets a 4). But there's a tricky point.

What does "if Pat rolls one die" mean?

Conditional Probabilities: Chances in Specific Conditions

"If Pat rolls one die" is a **condition**. In math and engineering, ^o we call such probabilities ^o **conditional probabilities** ^o and we write them this way: **probability (get a 4 | Pat rolls one die)** The meaning is the same:

if Pat rolls one die, Pat gets a 4.

Did We Compute the Wrong Values?

But that's NOT what we wanted to know! We **wanted to compare probability (Pat rolled one die AND got a 4)** with **probability (Pat rolled two dice AND got a 4)**

What can we do?

Apply Bayes' Theorem to Find Our Answer

So to find

probability (Pat rolled one die AND got a 4),

we compute

probability (Pat rolled one die) · probability (got a 4 | Pat rolled one die)

We know the second number: 1/6

But how can we know how Pat makes decisions? We can't. Pat is a fictional character!


```
What if Pat tells us that
probability (Pat rolls one die) = ¼ and
probability (Pat rolls two dice) = ¾ ?
In that case, our guess changes, as
¼ · probability (got a 4 | Pat rolled one die)
= ¼ · 1/6 = 1/24
<
%
¼ · probability (got a 4 | Pat rolled two dice)
= ¾ · 1/12 = 1/16
```


MLE Solves the Voice Recognition Problem

How is MLE useful in speech recognition?

Voice recognition answers the question, "Given an audio input, what sequence of words was spoken?"

A solution is generated by finding the sequence of words that is most likely to have generated the audio input.

(Our brains are good with this question.)

MLE Solves the Natural Language Problem

How is MLE useful in NLP?

37

39

Natural language processing answers the question, "Given a sequence of words, what did the speaker want to communicate?"

A solution is generated by finding the meaning that is most likely to have generated the sequence of words.

(Our brains are also good with this question.)

Guessing Words Easier with Words on Both Sides

Understanding how words fit together is an important element. For example, you hear,

"I took my ... [more words]."

What's the next word?

In 1953, journalists* realized that **the words AFTER the missing would help** in guessing.

Everyone else already knew.

*W. L. Taylor, "Cloze procedure: A new tool for measuring readability," *Journalism Bulletin*, 30(4):415–433, 1953.

Google Applied Bidirectional Idea to Create BERT

"I took my ... for a walk."

What's the next word?

Dog, perhaps?

Could be lots of words, but dog may be a good MLE choice.

"Cat," "snake," "Ferrari," maybe not so good.

In 2019, Google* realized the same thing, and natural language processing changed forever.

*Everyone except engineers, I meant: J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL, 2019. To their credit, the authors DID mention the journalists.

Making Use of Big Language Models

Models like BERT*

- ° can be connected to task-specific networks
- ° then either used directly
- ° or fine-tuned to the specific task.

*"Bidirectional Encoder Representations from Transformers" ... yeah, sure. See the picture.

43

41

Examples of NLP Applications

Classification: How much did a reviewer like a movie? What sentiment did they express? Did they mention or suggest any movie categories?

Interpretation: Is anything in a patient's electronic medical records relevant to the patient's current symptoms? Which sentence in a page of text answers a particular question?

Organization: How are documents and terms related? Which documents are relevant to a given question of interest?

47

Terminology You Should Know from These Slides

° voice/speech recognition

- ° Natural Language Processing (NLP)
- ^o Maximum Likelihood Estimation (MLE)

° conditional probability

° Bayes' Theorem

^o BERT (the bidirectional language model)

Concepts You Should Know from These Slides

- ° steps computation: audio \rightarrow noise removal \rightarrow word sequence \rightarrow meaning
- ° sources of noise
- ° challenging aspects of speech recognition
- ° hierarchy of models for speech: phonemes, words, and grammar
- impact of human experience on probabilistic "reasoning"
- ° how MLE can be used to solve problems
- ° bidirectionality of natural languages