University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 101: Exploring Digital Information Technologies for Non-Engineers

Machine Learning (part 2 of 2)

Neural Nets through the Years

- 1942—First computational model for neural networks
- 1965—First functional networks of many layers
- 1975—Backpropagation algorithms for training multilayer networks
- 1990s—Datasets quite small; computers not that fast; other methods doing better
- 2005-2007—Unsupervised learning with deep nets; use of GPUs
- 2009—ImageNet: Image database of 14 million images for more than 21000 concepts
- 2012—AlexNet: Winner of ImageNet Large Scale Visual Recognition Challenge 2012

Perceptron

An early version of a **perceptron**, which **mimics a human neuron**.

Inputs (on the left) are multiplied by weights, then summed together with a bias.

The sum is then converted to +1 or -1.

It's a linear classifier!

Neural Networks Consist of Many Artificial Neurons

To perform more complex (non-linear) tasks,

- ° perceptrons can be connected in a network
- by using the output of one perceptron
- ° as the input to a second,
- ° then a third, and so forth.

Input, Output and Hidden Layers

- Input layer (in yellow)
- Every input is connected to every node in the hidden layer (in blue)
- ° Output layer (in green) consists of a single output perceptron
- Every node in hidden layer is connected to the output node

Advancement: Deeper Networks that Leverage Input Relationships

In theory, a small number of fully connected hidden layers can learn anything.

In practice, three things happened before neural networks enjoyed major success.

By the late 1990s, researchers had built

- ° new architectures that leveraged relationships between the inputs, and
- ° deeper networks to capture more complex functions more quickly.

Advancement: Ubiquitous Availability of Fast Computation

The last change came in early 2007

° with the release of the first easily programmable **graphics processing unit** (GPU),

• NVIDIA's GTX80 (not the one shown).

GPUs had developed

- ° to meet the entertainment market demand for high-resolution graphics,
- ° and by 2007 offered much more raw computational power than processors.

They are well-suited to training and applying neural networks.

UIUC Offered First Class on GPGPU Programming

The **first class on** general-purpose GPU (**GPGPU**) **programming**

° was offered at UIUC in Spring 2007

° by David Kirk, chief architect from NVIDIA,

° and Wen-mei Hwu, ECE professor.

But wait !!! What features should we often called aw "art" Enter neural networks.

Deep Learning Derives Features from Data

More recent designs

- ° have stopped using human-modeled features, and
- ° instead **allow training** of the neural network
- ° to derive the features of importance from the data.

This approach is called **deep learning**.

Deep learning is **possible due to** the sheer **volume of data** now **available** in many problems.

3 Neural > 3 network

Terminology You Should Know from These Slides

- Deep Neural Networks (DNNs)
- ° perceptron
- ° fully connected layer
- ° Inout layer, hidden layer, output layer
- Graphics Processing Unit (GPU)
- ^o Deep learning