University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 101: Exploring Digital Information Technologies

Authentication and Physical Security

ECE 101: Exploring Digital Information Technologies for Non-Engineers © 2022 Steven S. Lumetta, Romit R.

 \odot 2022 Steven S. Lumetta, Romit Roy Choudhury and Abrita Chakravarty. All rights reserved. 1

A Gesture of Agreement ...

Almost lost due to Covid-19...

ECE 101: Exploring Digital Information Technologies for Non-Engineers

© 2024 Steven S. Lumetta, Romit Roy Choudhury and Abrita Chakravarty. All rights reserved. 2

How do you do this Online?

Would you make a deal with this "person"?

ECE 101: Exploring Digital Information Technologies for Non-Engineers

 \bigcirc 2024 Steven S. Lumetta, Romit Roy Choudhury and Abrita Chakravarty. All rights reserved. 3

Online Security: Authentication to Reliably Identify an Entity

Authentication: the process or action of verifying the identity of a user or process.

By extension, the process to associate a computer program with a person or a company (an entity).

Example: Usernames and Passwords

When authenticating a user, a machine or a website compares the password entered by the user with the one that it already knows.

Problems with Password Storage

- Many early systems (and, unfortunately, some to this day) kept the passwords for all of their accounts in a "password file" that contained the passwords in clear text.
- Normally, by design, the password storage would only be accessed by an administrator user (root, admin, superuser) and operating system utilities.
- But under unusual circumstances, caused by software implementation errors or deliberate misuse, the contents of the password storage file almost inevitably can become available to adversaries.

Encryption

- •Encryption is the process of encoding information.
- •Encryption is part of the broader field of **Cryptography**, which is the **practice and study of techniques for secure communication** i.e. communication in the presence of an adversary.
- •Today, cryptography is used as a tool for informatics, business, finance, politics, human rights—any sector that deals with **personal information** or **requires communication**.

Encrypted Passwords

Since storing passwords in the clear has clearly proven itself to be a bad idea, one option was to store passwords in an encrypted form instead—store them in a coded form.

- In the 70's Unix operating systems would encrypt a block of 0 bytes with the user password and store the result in an /etc/passwd file
- To counter brute-force-attack, hash value of password could be stored, using for example cryptographic hash functions, such as SHA256

Attacks on Passwords

A rainbow table attack is conducted

- by choosing thousands of common passwords,
- encrypting (or hashing) them,
- storing the precomputed values in a table (dictionary), and
- looking for any matches with the values stored in /etc/passwd.

Precomputed dictionary attacks have been successful because people:

- are not good at creating and remembering long random passwords and
- they tend to use as passwords common words, phrases or dates. <u>https://www.ncsc.gov.uk/static-assets/documents/PwnedPasswordsTop100k.txt</u>

Seasoning the Passwords?

Salt is random data that is used alongside the password as additional input to a password storage safeguard algorithm.

A new salt is randomly generated for each password,

- so even if the **passwords** used were the **same**,
- the resulting **hash** stored would be different.

Salts do not need to be encrypted or stored separately from the hashed password itself. If used correctly, salt

- will make the attacker's job substantially more difficult by increasing the size of the table needed for a successful attack,
- even if an attacker has access to the database with the hash values and the salts

Hash Functions

Hash functions take an arbitrary long, but finite, input and produce a fixed-size output based on that input.

Applying a hash function to the input data creates a **digest** that contains (check <u>notebook</u>)

- hash value,
- hash code,
- hash checksum

You check against the digest to see if the input has been **accidentally** or **intentionally** changed.

Application: Large Documents Easier to Distribute through Others

Imagine that I've
written an important document (or a large program) and
want to make it publicly available,
but don't want to pay for bandwidth for downloads.

Instead, I **allow other people to provide copies** of the document. original document

Use a SHA Hash to Check the Document's Authenticity

How can you tell whether someone has tampered with the copy you obtain? original To allow you to check, ^o I **compute a SHA** value (a **hash**) ° for my document (say 64 Bytes—small) ° and give the hash to everyone directly.

Matched Hashes Imply Authentic Documents

After downloading a copy, **you compute a** SHA **hash**.

If the hashes match, either:

- 1. your copy is accurate,
- 2. or someone produced another document with the same SHA hash.

The second case is assumed to be impossible.

Hash Space is Effectively Infinite

Why is it so hard to guess?

If hash bits are random,

° the **chance** that a forged document

 $^{\rm o}\,{\bf has}\,\,{\bf the}\,\,{\bf same}\,\,64\text{-Byte}$ (512-bit) ${\bf hash}$

° is 1 in 2^{512} , or about 1 in 10^{155} .

One-way hash functions ° are thus **considered unbreakable** ° ... **for now**.

only 10⁸⁰ particles in the observable universe

An Indispensable Tool of Cryptography

Cryptographic hash functions are an indispensable tool of cryptography, as they are:

- efficient to compute for any finite input
- same input to the same hash function will always produce same output
- hard to "trick"; a slight change in the input results in a drastically different output
- hard to guess or work back to an input that will produce a given output

Encryption beyond Passwords

There is always someone malicious to listen in on your conversation ...

- Modern communications, especially the Internet, operate under the assumption that the world is hostile and for anything you say there is always someone malicious to listen
- •Same reason why people would put handwritten letters in an envelope before sending, but scaled for billions of people and devices.
- •Cryptography, in turn, is one of the major instruments in the arsenal of information security, a digital protective envelope for communications.

Secure Communication

Today people are used to most of their connections to the web being secure, but that was not always the case.

- HTTP (Hypertext Transfer Protocol), the foundation of data communication over the World Wide Web (WWW), is plaintext.
- All of the data in HTTP requests and responses is sent in the clear, under a risk of all sorts of intrusions and fraud.

Providing security of communication over computer networks is the continuing challenge.

How can Cryptography Help?

Cryptography has grown to be not only about encryption anymore, but includes a group of special-purpose algorithms to sustain the wider infrastructure of information security, such as:

- user and message authentication,
- protection from illegitimate changes to messages,
- protection from eavesdropping, etc.

Ciphers

Ciphers operate on a lower level of message structure letters historically, bits nowadays—and utilize some defined set of mathematical operations.

A key is used to encrypt the message text.

Encryption produces an illegible sequence of letters (or bits)—called a **ciphertext**.

Caesar Cipher

What does this mean? khoor hello How about the following? qlfh wr phhw brx nice to meet you

Try some <u>examples</u>

Secret Key Cryptography

Try some <u>examples</u>

- Two parties agree on the **cipher** and the **key** to encrypt their future messages
- Alice uses the key to encrypt the plaintext and sends the ciphertext to Bob
- Bob has the same key and uses it to decrypt the message
- A single key is used to both encrypt and decrypt
- Also called symmetric key cryptography

Pros and Cons

Public Key Cryptography

Cryptographic Objectives

What is one trying to achieve by employing cryptographic algorithms in information security?

- **Confidentiality**—obligation to keep the information secret from all eyes except those of the owner or intended receiver
- Authentication—communication over a network does not happen in physical proximity; parties do not see or talk to one another in person, so they need to be confident of each other's identity and the data exchanged.
 - Entity authentication—mutual identification of parties in a communication
 - **Data origin authentication**—binding the information (message) to its source, author, date of origin, data content, time sent, etc.

Cryptographic Objectives

- **Data integrity**—ensuring prevention and detection of the unauthorized alteration of data
- **Non-repudiation**—capability to determine whether a party has performed a certain action, such as:
 - creating information,
 - digitally signing information,
 - sending a message or transaction,
 - approving information or receiving a message,

How Do We Know that Keys are Valid?

Cryptography is pretty hard to break.

Fooling the humans who use it ... not so hard.

How do your browser and a server

° know that no one in the middle of the Internet

 $^{\circ}$ is "helping" to agree on a key?

How do you know that the "public key for Abrita" is really mine?

Trust has to start somewhere.

For most people, it's not with the government.

And it's not with most companies.

Certification Authorities Provide the Root of Trust

Instead, we create

- ° trust or certification authorities (CAs),
- ° organizations independent enough of both government and corporate influence
- $^{\circ}$ that they can be trusted.

For example, ssl.com,

 $^{\circ}\,a$ group named for the Secure Socket Layer

 $^{\circ}\,used$ between browsers and web servers.

27

Role of Businesses Built on CAs

Companies such as Verisign can also play other roles:

- [°] Help companies use computing to replace signatures.
- ° Serve as a witness or notary for a signature on an agreement between authenticated users.
- ° Ensure that loss of a single secret key doesn't allow an entity to back out of their signature.

Beyond the Algorithms: Security needs Planning

- Security of communications cannot be achieved solely by developing mathematical algorithms and protocols.
- Strong cryptography is necessary for secure communications, but not sufficient. Reliable security of information goes beyond cryptography alone.
- It also requires **carefully planned procedures, operation and establishment of laws**.

Beyond the Algorithms: The Tool is as Good as How you Use It

- Cryptography is a powerful tool that needs to be utilized properly.
- A tough bank vault will not protect the gold inside if the lock combination is written on a sticky note next to it. Like seat belts, cryptography will not completely protect us, but is indispensable nevertheless.
- Many systems fail because they were designed to protect the wrong things—or the right things, but in the wrong way.

Terminology You Should Know from These Slides

- ° authentication
- ° hash function
- ° Secure Hash Algorithm (SHA)
- ° cipher
- ° cryptographic key
- ° symmetric-key cryptography
- ° asymmetric-key cryptography
- ° certification/certificate authorities (CAs)