Origins of Q.M.

Screen with

$$
2 \text { slits }
$$

Law \#1: If a quantum system/particle can be in state 10> or state |1> it can also be in a "superposition "state
particle l quit

$$
\begin{aligned}
& |\psi\rangle^{2}=\alpha|0\rangle+\beta|1\rangle \\
& \text { "amplitud en on } 0
\end{aligned} \quad \begin{array}{r}
\text { "amplitude" on } 1 \\
\text { where }|\alpha|^{2}+|\beta|^{2}=1,(\alpha, \beta) \in \mathbb{C}^{2} . \\
\\
\\
=a+b i
\end{array}
$$

$|0\rangle$ and $|1\rangle$ are "basis" states.

ExAMPLES.
" 0.8^{4} amplitude on 10$\rangle, " 0.6^{n}$ amplitude on |1)

$$
0.8|0\rangle+0.6|1\rangle
$$

Probability of detector saying " 0 " will

$$
\begin{aligned}
& 0.8|0\rangle-0.6|1\rangle \\
& i|0\rangle+0|1\rangle \\
& \chi^{2}=1 \\
& |i|^{2}=1 \quad|0|^{2}=0 .
\end{aligned}
$$

Law \#2. for a particle with amplitude α on $107, \beta$ on 11\rangle if you "measure"' this particle,

$$
X x^{4} 0^{n} 0^{n} 1^{4} \text { outcome }
$$

then you obtain "O" w.p.ld ${ }^{2}$ ${ }^{" 1}{ }^{\prime \prime}$ w.p. $|\beta|^{2}$

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& \alpha=0.8 \\
& \beta=0.6 \\
& \alpha=0.8 \\
& \beta=-0.6
\end{aligned}
$$

will always say u_{1} ".
same probabilities

Qubit is basic unit of quantum information.

$$
\begin{aligned}
& \lambda \psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}^{2} \\
& \text { "Key" notation } \\
& 1>\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \text { inplex } \\
& \text { and }|x|^{2}+|\beta|^{2}=1
\end{aligned}
$$

Quit is a 2_{2-D} unit vector in \mathbb{C}^{2}.
$=|10\rangle+0|1\rangle$ and $=|1\rangle$: basis vectors
$\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are basis of \mathbb{C}^{2}
These are orthogonal to each other. orthonormal
$\{|0\rangle,|1\rangle\}$ is called "computational basis.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]} & =\alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
= & \alpha^{\prime}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\beta^{\prime}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
{\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\alpha^{\prime}+\beta^{\prime} \\
\alpha^{\prime}-\beta^{\prime}
\end{array}\right] \Rightarrow \alpha^{\prime}=(\alpha+\beta) / 2} \\
\beta^{\prime}=(\alpha-\beta) / 2
\end{array}\right]+\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left(\frac{\alpha+\beta}{2}\right)\left[\begin{array}{c}
1 \\
1
\end{array}\right]+\left(\frac{\alpha-\beta}{2}\right)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$\{1+7,1-7\}$ is "Hadamard" basis.

Quantum Operations
"Phase shift"

$$
\begin{aligned}
& \frac{|0\rangle+|1\rangle}{\sqrt{2}} \rightarrow \frac{|0\rangle+e^{i \theta}|1\rangle}{\sqrt{2}} \quad \begin{array}{c}
\theta=\pi \\
\left|e^{i \theta}\right|^{2}=1
\end{array} \frac{|0\rangle-1\rangle\rangle}{2} \\
& \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle+e^{i \theta} \beta|1\rangle \\
& \left.\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
e^{i \theta} \beta
\end{array}\right] \quad \text { shifts phase on } 11\right\rangle \\
& \theta=\pi \quad e^{i \theta}=-1 \quad \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle-\beta|1\rangle \\
& \left.\theta=\pi / 2 e^{i \theta}=i \quad \alpha|0\rangle+\beta 11\right\rangle \rightarrow \alpha \mid 07+i \beta 11 \\
& \rightarrow\left[\begin{array}{cc}
e^{i \theta} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
e^{i \theta} \alpha \\
\beta
\end{array}\right]
\end{aligned}
$$

shift the phase on 10)
"Bit flip"

$$
|0\rangle \rightarrow|1\rangle, \quad|1\rangle \rightarrow|0\rangle
$$

"Had amard transform"

$$
\begin{aligned}
& H(|0\rangle) \longrightarrow|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
& H(|1\rangle) \rightarrow \quad|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& H(\alpha|0\rangle+\beta|1\rangle) \rightarrow \alpha H(|0\rangle)+\beta H(|1\rangle) \\
& H(|+\rangle)=H\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \\
& =\frac{H(|0\rangle)}{\sqrt{2}}+\frac{H(|1\rangle)}{\sqrt{2}} \\
& =\frac{|0\rangle+|+\rangle}{2}+\frac{|0\rangle-11 \mid}{2} \\
& =|0\rangle \\
& H(|-\rangle)=11\rangle
\end{aligned}
$$

Apply any linear transform that preserves "energy"

$$
\begin{aligned}
& |0\rangle \rightarrow U_{00}|0\rangle+U_{01}|1\rangle \\
& |1\rangle \rightarrow U_{10}|1\rangle+U_{11}|1\rangle \\
& U=\left[\begin{array}{ll}
U_{00} & U_{10} \\
U_{01} & U_{11}
\end{array}\right]
\end{aligned}
$$

$U(|0\rangle) \rightarrow$ written as $U|0\rangle$

$$
\left[\begin{array}{ll}
u_{00} & u_{10} \\
v_{01} & U_{11}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
u_{00} \\
u_{01}
\end{array}\right]
$$

$$
=U_{00} 107+U_{01} 117
$$

$$
u|1\rangle\left[\begin{array}{ll}
u_{00} & U_{10} \\
U_{01} & U_{11}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
U_{10} \\
U_{11}
\end{array}\right]
$$

$$
=u_{10}|0\rangle+u_{11}|1\rangle .
$$

$$
u|\psi\rangle \rightarrow\left[\begin{array}{ll}
u_{00} & u_{10} \\
U_{01} & u_{11}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{ll}
\left(u_{00} \alpha+u_{10} \beta\right) \\
\left(u_{01} \alpha+u_{11} \beta\right)
\end{array}\right]
$$

Recall: We need, for every quit

$$
\begin{aligned}
|\psi\rangle & =\alpha|0\rangle+\beta|1\rangle \text { that } \\
1=|\alpha|^{2}+|\beta|^{2} & =\alpha \alpha^{*}+\beta \beta^{*} \\
& \left.=\frac{\left[\alpha^{*}\right.}{1} \beta^{*}\right]\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \\
& =\uparrow \quad(|\psi\rangle)^{+}|\psi\rangle
\end{aligned}
$$

for any $\left.|\psi\rangle, \frac{(|\psi\rangle}{} \begin{array}{l}1\rangle \text { : Met notation }\end{array}\right)_{\text {"bra"-"psi". }}=\left\langle\left.\psi\right|^{+}\right.$
1>: Ret notation
For every quit $|\psi\rangle$,

$$
\langle\psi \mid \psi\rangle=1
$$

Now lets say we applied $U|\Psi\rangle$
$U=\left[\begin{array}{ll}v_{00} & U_{10} \\ v_{01} & v_{11}\end{array}\right] \quad$ to obtain $|\phi\rangle$

$$
\begin{array}{r}
|\phi\rangle=U|\psi\rangle \text { where } U=\left[\begin{array}{ll}
U_{00} & U_{10} \\
U_{01} & U_{11}
\end{array}\right] \\
|\psi\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
\end{array}
$$

Then, as long as $|\psi\rangle$ is a qubit

$$
\left\{\begin{array}{l}
|\psi\rangle \text { is a qubit } \\
\text { i.e. }|\alpha|^{2}+|\beta|^{2}=1 \\
\text { equivalenty }\langle\psi \mid \psi\rangle=1
\end{array}\right)
$$

$\phi=U|\psi\rangle$ must also be a qubit.

$$
\begin{aligned}
& \langle\phi \mid \phi\rangle=1 \\
\langle\phi \mid \phi\rangle & =(|\phi\rangle)^{+}|\phi\rangle \\
& =(U|\psi\rangle)^{+}(U|\psi\rangle) \\
& =\langle\psi| \frac{U_{2 \times 2}^{+} U_{2 \times 2}}{=M_{2 \times 2}}|\psi\rangle \\
1 & =\langle\psi| M|\psi\rangle
\end{aligned}
$$

for every qubit $|\psi\rangle$,

$$
\langle\psi| \forall \alpha|M| \psi\rangle\left._{\text {set. }}|\psi|\right|^{2}+|\beta|^{2}=1
$$

This means $\forall \alpha, \beta$ s.t. $|\alpha|^{2}+|\beta|^{2}=1$,

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right]\left[\begin{array}{ll}
M_{00} & M_{10} \\
M_{01} & M_{11}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=1 .} \\
\text { i.e. } \\
{\left[\begin{array}{l}
\alpha^{*} M_{00}+\beta^{*+} M_{01} \\
\text { i. }
\end{array} \alpha^{*} M_{10}+\beta^{*} M_{11}\right.}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=1 .
$$

Want this to be 1 No MATTER what α and β are.

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2} \\
& \text { i.e. } \quad U^{+} U=I
\end{aligned}
$$

If A matrix U which satisfies $U^{+} U=I$ is called a UNITARY MATR $1 X$.

Properties of unitary matrices

$$
U^{+} U=I \quad \Leftrightarrow \quad U^{+}=U^{-1}
$$

$U_{i s} \Leftrightarrow$ columns of U are orthonormal vectors

$$
\begin{aligned}
&\left(U^{+} U\right)_{i j}= \sum_{k \in[n]}\left(U^{+}\right)_{i k} \cdot U_{k j} \\
&= \sum_{k \in[n]} U_{k i}^{*} \cdot U_{k j} \\
& i^{\text {th }} \text { column } \quad j^{\text {th column }}
\end{aligned}
$$

$(i, j)^{\text {th }}$ entry of $U^{+} U$ is 0 when $i \neq j$
1 when $i=j$
$[U$ is called Hermitian if additionally]

$$
u=u^{t}
$$

Multi-Qubit Systems
2 quoits
"tenser product" notation " both $|0\rangle \rightarrow|00\rangle \quad|0\rangle \otimes|0\rangle$
first $|0\rangle$, second $|1\rangle \rightarrow|01\rangle|0\rangle \otimes|1\rangle$

$$
\rightarrow|10\rangle \quad|1\rangle \otimes|0\rangle
$$

$$
\begin{array}{lll}
\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\} \\
\text { are basis states a }
\end{array} \rightarrow|11\rangle \quad|1\rangle \otimes|1\rangle
$$

are basis states of a 2 -quit system

$$
\begin{aligned}
& \left|\phi_{0}\right\rangle=\alpha_{0}|0\rangle+\beta_{0}|1\rangle \\
& \left|\phi_{1}\right\rangle=\alpha_{1}|0\rangle+\beta_{1}|1\rangle
\end{aligned}
$$

joint state

$$
\begin{aligned}
& |\psi\rangle=\left|\phi_{0}\right\rangle \otimes\left|\phi_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \\
& \left.+\beta_{0}+\beta_{1}\right)_{1}=\alpha_{0}=\alpha_{1}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\beta_{0} \alpha_{1}|10\rangle+\beta_{0} \beta_{1}|1\rangle
\end{aligned}
$$

$$
\begin{array}{r}
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle \\
+\alpha_{11}|11\rangle
\end{array}
$$

"Measure" only the first quit in the computational basis

Square the amplitudes on terms that have O in the first position.

$$
\left(\left(\left.\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}\right): \underset{\text { probability }}{\text { with which }}\right.
$$ you observe a " O ".

$$
\begin{aligned}
\text { state collapse to } & \frac{\alpha_{00}|00\rangle+\alpha_{01}|01\rangle}{\sqrt{\left(\left.\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}\right.}} \\
= & |0\rangle \otimes \frac{\alpha_{00}|0\rangle+\alpha_{01}|1\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left.\alpha_{01}\right|^{2}}}
\end{aligned}
$$

