CS 580: Algorithmic Game Theory, Fall 2025
HW 1 Solutions

Instructions:

1. We will grade this assignment out of a total of 40 points.

2. You can work on any homework in groups of (<) two. Submit only one assignment per
group. First submit your solutions on Gradescope and you can add your group member after
submission.

3. If you discuss a problem with another group then write the names of the other group’s
members at the beginning of the answer for that problem.

4. Please type your solutions if possible in Latex or doc whichever is suitable, and submit on
Gradescope.

5. Even if you are not able to solve a problem completely, do submit whatever you have. Partial
proofs, high-level ideas, examples, and so on.

6. Except where otherwise noted, you may refer to lecture slides/notes. You cannot refer to
textbooks, handouts, or research papers that have not been listed. If you do use any approved
sources, make sure you cite them appropriately, and make sure to write in your own
words.

7. No late assignments will be accepted.

8. By AGT book we mean the following book: Algorithmic Game Theory (edited) by Nisan,
Roughgarden, Tardos and Vazirani. Its free online version is available at Prof. Vijay V.
Vazirani’s webpage.

1. Consider a market with three buyers A = {a1,as, a3} and four goods M = {g1, g2, 93,94}
Let the budget of each buyer be $10, and the valuation function be linear/additive where the

’ \\91\92\93\94\
a1 || 412121
az || 2 | 4|1 |2
as || 1| 21] 2|4

value per unit is as given in the following table.

(a) (2 points) Find an allocation that is Envy-Free and Pareto Optimal.
(b) (3 points) Find a Competitive Equilibrium allocation and prices for the above market.
(¢) (5 points) Run the DPSV’08 algorithm to find a CE prices for the above example.

Solution.


https://www.ics.uci.edu/~vazirani/

(a)

(b)
()

We can assign g1 to a1, g2 to ag, and g3, g4 to as.

To verify envy-freeness, we can check Vi(X1) =4, V1(X2) =4, V1(X3) = 3. So aj doesn’t
envy anyone. Similarly, V5(X1) =4, Va(X2) =4, V2(X3) = 3. So ay doesn’t envy anyone.
And finally, V3(X1) = 1, V3(X2) = 2, V3(X3) = 6. So ag doesn’t envy anyone either.

To show Pareto optimality, consider that we can upper bound the social welfare as
22 0i(X;) < 37 max;(vi(g;)) = 12. Our allocation achieves this sum, and any Pareto
dominating allocation must exceed this sum, which is impossible.

We can assign p = {8, 10,4, 8}. The corresponding demand for a; is {1,0,0.5,0}, for as
is {0,1,0,0} and for ag is {0,0,0.5,1}, which meets supply and thus is a CE.

Initialize p = {2,2,1,2}. We can verify the min-cut across the associated flow graph is
across the p edges. We can scale p until p = {8, 8,4, 8}, at which point we get a cross
min-cut by cutting a1, as,and go.

Then we add a; and a3 to Ay, and g1, g3,and g4 to Gy. We continue scaling the price
of go until p = {8,10,4,8}. No new MBB edges are formed, and g, joins Gy. So we are
done.

2. Consider a market M with n agents and m divisible goods, where supply of good j is g;
and the valuation of agent ¢ is defined by a monotonically non-decreasing concave function
Vit R = Ry. A competitive equilibrium with equal income (CEEI) of such a market is
a pair (X,p) where p is a price vector (pi,...,pm), pj is the price-per-unit of good j and

X =

(a)

(X1,...,X,) is an allocation of goods to agents s.t.,

Optimal Bundle. For each agent i, X; € argmaxy>0:z_pjyj<1Vi(Y).
>0:30,p;Y;<

Demand equals Supply. For each good j, >

]Xl-j < ¢j, and whenever p; > 0 we
have Zze[n] Xij =4q;.

i€n

(5 points) Show that it is without loss of generality to assume that ¢; = 1 for all goods j,
that is, to assume that the supply of every good is one. Formally, come up with another
market M’ = ([n], [m], (¢})jepm]> (Vi )ic[n)) such that ¢; = 1, Vj € [m], and show that a
CEEI of M’ can be mapped to a CEEI of M.

(5 points) Show that when the DPSV algorithm is executed to compute a CEEI of such
a market, Event 2 of the algorithm can always be computed in polynomial time. That
is, the value of « for which a new MBB edge appears between some agent i € Ap and
some good j € G, and the pair (i, j), can be computed in polynomial time. Here, « is
the constant by which the prices of the goods in Gp are scaled in one iteration of the
algorithm. Set Ap consists of agents with MBB edges to goods in Gp before o starts
increasing, and G is the set of goods with demand = supply, meaning if the market
consisted only of the subset (Ar, GF), then the prices of goods in G and their allocation
to Ap satisfy the requirements of a CEEL (See Lecture 3 slides| for further details)

Solution.


https://courses.engr.illinois.edu/cs580/fa2023/Slides/Lec3-CE-Algorithm.pdf

(a)

To define M’, we simply need to define v} for all agents i. Let
V(X Xi) = i@ X, - g Xi)-

Now, consider a CEEI (X', p') of M’. We map it to a CEEI (X, p) of M in the following
way:
e For every pair of agent ¢ and good j, let X;; = qu’

/

e Lor every good j, let p; = -2
Notice that since (X', p’) is a CEEI of M’, we have that for each good j,

ZXZ']' = ZQijj =gqj ZXz(j < qj

whenever p; > 0. Also, we know that X € argmaxy>o.5° py;<1Vi(Y). It suffices to
>0:30; pY;<

show that this is the same set of allocations in the original market, i.e. that for every
agent 1, Zj pjXi; <1, which is true, since

>_piXiy = Z ZpJX/ <1
J

J

Event 2 occurs when a new MBB edge appears between a dynamic agent and a frozen
good. Note that as there are no edges between the dynamic agents and the frozen goods
before Event 2 occurs, the MBB value of any dynamic agent over the frozen goods is
smaller than their MBB value over the dynamic goods. As the algorithm proceeds, we
increase the prices of all dynamic goods by a factor of «, thereby decreasing every agent’s
MBB value over these goods by a factor of a.

Thus, an MBB edge will appear between a fixed dynamic agent ¢ € Ap and some frozen
good, when 7’s MBB value over the dynamic goods, after being lowered by «, becomes
equal to their MBB value over the frozen goods. The value of o at which such an edge
appears adjacent to agent ¢, denoted by say «(i), can thus be computed as follows.

The MBB value of i over the dynamic goods, after their price is increased «(7) times, is

max;eq,, a(l)p The MBB value of 7 over the frozen goods is max;eq, p]
U'j

. maxjegD —

These values become equal when (i) = ——%-

7,] °
max;eGp P

Event 2 occurs when the first such edge appears among all agents in Ap. Therefore the
value of o at which Event 2 appears is,

Yij

pj

Vij *
bj

o . MaXjedp
a = min «a(i) = min
i€ApD i€ApD HlaneGF

This equation for a can be solved in polynomial time, therefore Event 2 can be computed
in polynomial time.




3. (Indivisibles: Short Questions)

(a)
(b)

(2 points) Give an example with general monotone valuations where an EF1 allocation
is not Propl.

(3 points) Give an example with additive valuations where the round robin algorithm
achieves better social-welfare (>, Vi(A;)) than the envy-cycle-elimination algorithm un-
der certain choices.

(2 points) Give an example with additive valuations where an EF1+PO allocation is not
EFX.

(2 points) For additive valuation functions, we showed MMS; < w for all agents i.
Give an example with sub-additive valuation functions where this is not true, and in
fact MM S; = v;(M) for all agents i.

(1 point) Prove that if an a-MMS allocation exists for an instance, then an a-MMS+PO
allocation also exists.

Solution.

(a)

Consider the following instance with 2 agents a1, a2, and 3 goods, g1, ¢g2,93. The val-
uations of the agents are identical functions defined as follows. For the empty set,
v(@) = 0, and for singleton bundles, v(g1) = v(g2) = 1, v(g3) = 2. For all two-sized
bundles, v({g1,92}) = v({92,93}) = v({91,93}) = 3 and for the grand bundle, denoted
by M, ’U(M) - v({gla927g3}> = 10.

Consider an allocation A for this instance that assigns A1 = {g1} to a1, and Ay = {g2, 93}
to as.

For ai, v(A1) > v(A2\{g3}), and for as, v(A2) > v(A1), and thus it is an EF1 allocation.
However, for a; Propl condition is not satisfied because for each g € {g2,¢93} (= M\ A1),
v(AU{g}) =3 <b=v(M)/2.

Consider two agents 1 and 2, and four goods a,b,c and d. The agents’ valuations are
vi(a) = 10,va(a) = 9,v1(b) = vi(c) = vi(d) = 3,v2(b) = va(c) = v2(d) = 1. Now, the
envy-cycle elimination algorithm will allocate a to 1 and b, c and d to 2, since after a’s
allocation, 2 will keep envying 1. The total welfare of this allocation will be 13. However,
round-robin will allocate a and ¢ to 1 and b and d to 2, for a total welfare of 15.

Consider two agents and three goods. The values of the agent 1 are 1,0,100, and of 2
are 0,1,10. The allocation which assigns goods a and c to agent 1, and b to agent 2 is
EF14+PO, since 2 does not envy 1 after the removal of ¢ from 1’s bundle, 1 does not
envy 2 at all and we cannot increase any agent’s valuation without decreasing the other
one’s. However, 2 envies 1’s allocation even after removing a from 1’s bundle, hence this
allocation is not EFX.

Consider 2 agents i, j, and 2 items g, h. Let the valuation function of ¢ be as follows.
Their value for the empty set is 0, and the value for each singleton bundle is v. The value
of both items together is also v. Then agent ¢ can form 2 bundles of value v, hence their
MMS value is v. v(M)/2 = v/2, hence MMS > v(M)/2.



(e)

Any allocation that Pareto dominates an a-MMS allocation gives an equal or higher
valued bundle to every agent, hence is also a-MMS. Thus, the Pareto optimal bundle
among all a-MMS allocations is a-MMS+PO.

4. (Algorithm Design)

(a)

(5 points) Consider an instance with additive valuations where items are identically
ordered. That is, there exists an ordering of items g1, g9, . . . , gm such that for each agent
i,

Vigy = Vigy = " 2 Vigp, -

Show that the envy-cycle elimination algorithm gives an EFX allocation when the items
are considered in a particular order.

(5 points) For the case with additive valuation functions, where v;(M) = n for all agents
i, show that when v;; < € for all agents i and goods j, an EF1+(1 — €)-MMS allocation
exists and can be computed in polynomial time.

Solution.

(a)

We let the goods be allocated in decreasing order of value. We need to argue two things:

i. That if we have a partial EFX allocation, after the envy-cycle elimination algorithm
allocates one extra item, the allocation remains EFX.

ii. That when the algorithm eliminates cycles, the allocation remains EFX.

To show (i), notice that at all times, v;(A;) — v;(A4;) < vi(g*) where g*is the good most
recently added to what is currently A;. Since bundles may have been permuted by the
ency-cycle elimination step, 7 may not have been in possession of what is currently A;
at the time ¢* was added. This does not affect the proof, however: it is sufficient to
interpret A; as “the bundle that currently belongs to j”. Thus instead of saying “i did
not envy j at the time”, we will say “i did not envy A; at the time”. Observe that
a good is allocated only to a player whom no one envies. Thus directly before g* was
added to A;, i did not envy Aj;: at that point v;(A4;) — v;(A;) < 0. Therefore directly
after g* was given to j, v;(A4;) —vi(A;) < vi(g*). Since v;(A;) can only have grown since
then, we have v;(A4;) — v;(A4;) < vi(g*) until a new good is added to A;.Since the goods
are allocated in decreasing order of value, the good most recently added to A; must also
be the least valuable good in A;. Therefore at all times, v;(A;) —vi(A;) < minge 4, vi(g),
and so v;(A;) > vi(Aj) mingea; vi(g). For additive valuations, this is equivalent to
v;i(A;) > vi(A; \ {g}) for all g € A;. Therefore the allocation at all times is EFX, so the
final allocation is EFX.

To show (ii), let G be the envy graph of the allocation A before the envy-cycle elimination
step. We first show that there exists another EFX allocation A" = (A],..., A)) with
envy graph G’, where G’ has strictly fewer edges than G. Let ¢ = (1,2,...,|c|) be a
cycle in G. Thus v;(A;) < vi(A§ mod |e))+1) for all i € c. Define a new allocation A’ where
A} = Aimod|d)+1 for all i, and let G’ = (V', E’) be the envy graph for A’. Tt is clear



that A’ is a permutation of A. Suppose A’ is not EFX: then there exist 7,5 € N and
g € A} where v;(A") <v;(A}\ {g}). Since A" is a permutation of A, there exists k € N
where Ay = A%, so v;(A]) < vi(A \ {g}). Observe that v;(A;) > vi(4;) if i € ¢, and
vi(A]) = vi(A;) otherwise. Thus v;(4;) < v;(A4) < vi(Ax \ {g}), and so A is also not
EFX. Therefore if A is EFX, then A’ is also EFX. Note that the number of edges from
V’\ ¢ into ¢ is unchanged. Also, the number of edges from ¢ into V' \ ¢ has decreased or
stayed the same, since the utility of every player in ¢ has strictly increased. Furthermore,
for each ¢ € ¢, the number of players in ¢ whom ¢ envies has decreased by at least one.
This shows that G’ has strictly fewer edges than G. If G’ still contains a cycle, we can
apply this process again to obtain G, G"', and so on. Since the number of edges strictly
decreases each time, we can apply this process at most | F| times before we obtain a envy
graph without a cycle.

We will show that any EF1 allocation also ensures a (1 — €)-MMS guarantee, thus any
EF1 algorithm computes the required allocation.

As v(M) = n, and there are n bundles in the EF1 allocation, by the pigeonhole principle,
for every agent there is at least one bundle they value at least 1. Let j denote the agent
whose bundle is valued at least 1 by some agent i. Then by EF1, we have, v;(4;) >
v;(A;\{g}) for some g € A;. As the valuation functions are additive, v;(A4;) > v;(A4;) —
v;({g}) > 1—¢€, as v;(4;) > 1 and v;({g}) < € for all g. As MMS; <v(M)/n =1 when
the valuation functions are additive, we have v;(4;) > (1 — €)M M S;.



