
Game Theory and
Multi-Agent Learning: A Survey

11 / 3 0 / 2 0 2 3

Reinforcement Learning, Multi-Agent, and Game Theory
1. Reinforcement Learning is a natural adaption & extension of behavioral psychology in machine learning: by
interacting with the environment and receive rewards, the agent learns to achieve some goals;

2. Multi-agent game is a universal scenario setup: multiple agents act in the same environment, and their
actions interacts with each other;

3. Where there is a multi-agent game, there is game theory;

4. If we want to use reinforcement learning algos to teach agents to play the multi-agent game, we need to
incorporate game theory to the algorithm;

G R A I N G E R E N G I N E E R I N G

Problem Statement

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Markov Decision Process (MDP)
Setup: states, actions, transition function , rewards function

Problem Statement: solving MDP means to find a policy function that satisfies a specific goal

Under a given policy , we can measure the value of taking a specific action on a specific state, as well as the value of a
specific state:

Stochastic Game (SG)
Setup: states, joint actions, transition function , rewards function

Problem Statement: find a policy function that satisfies a specific goal

(𝑆, 𝐴, 𝑇, 𝑅): 𝑆 × 𝐴 × 𝑆 → [0,1] 𝑆 × 𝐴 → ℝ

𝜋 :𝑆 → 𝐴

𝜋

(1)

(2)

(𝑛, 𝑆, 𝐴1,…,𝑛, 𝑇, 𝑅1,…,𝑛): 𝑆 × 𝐴1,…,𝑛 × 𝑆 → [0,1]
𝑅𝑖:𝑆 × 𝐴𝑖 → ℝ

𝜋𝑖:𝑆 × 𝐴𝑖 → [0,1]

G R A I N G E R E N G I N E E R I N G

Prerequisite

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Value Iteration for Solving MDP (Bellman, 1957)

Assumption: transition function and reward function both known (quite strong
assumption!)

Idea: at each state, search over all possible actions, calculate the one with highest discounted rewards, and pick it

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ

G R A I N G E R E N G I N E E R I N G

Flashback: Solving MDP with Model from RL perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

For each state 𝑠𝑖

Calculate long-term valuation
for each possible action 𝑎𝑗

Greedily update
policy: 𝜋(𝑠𝑖) = 𝑎∗

𝑖

Update state valuation:
𝑉 (𝑠𝑖) = 𝑞(𝑠𝑖, 𝑎∗

𝑖)

Policy Iteration for Solving MDP (Howard, 1960)

Assumption: transition function and reward function both known (quite strong
assumption!)

Idea: start from a policy , evaluate its value (Eq (2)), and update the policy if improvement available

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ

𝜋𝑖

G R A I N G E R E N G I N E E R I N G

Flashback: Solving MDP with Model from RL perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

For fixed policy 𝜋𝑘

Calculate long-term valuation
for all states under this

policy
𝑠𝑖

For each state , find
the best action

𝑠𝑗
𝑎∗

𝑗

Update policy:
𝜋𝑘+1(𝑠𝑗) = 𝑎∗

𝑗

Value Iteration for Solving Stochastic Game (Sharpley, 1953)

Assumption: 1. transition function and reward function both known;
 2. Zero-sum game

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ

G R A I N G E R E N G I N E E R I N G

Flash-now: Solving SG with Model from Game Theory perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Construct a
Matrix Game
from all A

Instead of in SR case, solve the
matrix game for MR

𝑚𝑎𝑥{}

Q-Learning for Solving MDP (Watkins, 1989)
Idea: without explicitly knowing the transition and reward function (thus no accurate Q value), use temporal-diff to appx

G R A I N G E R E N G I N E E R I N G

Flashback: Solving MDP w/o Model from RL perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Greedily take the
optimal action

Iteratively
estimate
q(s, a)

IndeQ-Learning (Tan, 1993)
Idea: treat other agents as a part of the environment, each agent trains via Q-learning in a decentralized manner

Critical issue: overfit to other agents’ policies!

G R A I N G E R E N G I N E E R I N G

Flash-now: Solving SG w/o Model from RL perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Environment

𝐀𝐠𝐞𝐧𝐭𝑖

𝐀𝐠𝐞𝐧𝐭𝑗

𝐀𝐠𝐞𝐧𝐭𝑘

Action

State
Reward

Action State
Reward

Action

State
Reward

Minimax-Q and Nash-Q for Solving Stochastic Game
Minimax-Q (Littman, 1994) assumes two-player Zero-Sum game, while Nash-Q (Hu & Wellman, 2003) extends to
multi-player general-sum

G R A I N G E R E N G I N E E R I N G

Flash-now: Solving SG w/o Model from GT-Guided RL perspective

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

For Nash-Q, it is solving: , where

 is the NE at stage s

𝑉 (𝑠) = 𝑄(𝑠) ×𝑛
𝑗=1 𝜋𝑛(𝑠)

𝜋𝑖(𝑠)

For minimax-Q, it is solving:
𝑉 (𝑠) = 𝑚𝑎𝑥

𝜋
𝑚𝑖𝑛

𝑜 ∑
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝑜)𝜋𝑎

Good Points:
1. To solve multi-agent stochastic games, we explored three directions: purely reinforcement learning, purely game-
theoretical, and their mixture;

2. For normal form games with full observation, most follow-ups are developed based on Minimax-Q and Nash-Q;

3. A Formula for Innovation:

It’d be nice if we can:
1. Extend to extended form games

2. Handle real-world scenarios: how to deal with prohibitively large pure action spaces?

G R A I N G E R E N G I N E E R I N G

What We Have So Far

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Game Solver + Environment
Modeller = New

Algorithm

Fictitious Play (Brown, 1951)
Assumption: the opponents play stationary strategies; zero-sum game

Idea: based on opponents’ play history, choose the best response

G R A I N G E R E N G I N E E R I N G

Flash-back: A Game Theoretical Approach to reach NE

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Extensive FP (Heinrich et al, 2015)
Pure Strategy: a sequence of deterministic actions;

Mix Strategy: a prob distribution over Pure Strategies;

Behaviour Strategy: a prob distribution over actions on a
 particular information state;

Kuhn’s Theorem: there’s an equivalence between a BS and a MS
 solve EFG using FP in normal form games!

Some Followups:

1. Fictitious Self-Play: a “weakened” fictitious play framework,
uses a RL architecture to appx BR, supervised learning arch to
update strategy;

2. DFSP: uses neural network as the function appx;

→

G R A I N G E R E N G I N E E R I N G

Flash-now: the Modern Variant of Fictitious Play

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Double Oracle (McMahan, 2003)
In a real-world game, the opponents’s possible move space is numerously large, and we need to efficiently strategize
to optimise for the worse case;

Assumption: Zero-sum, two-player matrix game

Idea: by iteratively compute & update the strategy set of a subgame, we eventually reaches equilibrium;

G R A I N G E R E N G I N E E R I N G

Some “Recent” Advances: Dealing with Real-world Games

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

Policy-Space Response Oracle (Lanctot, 2017)
In some real-world games, the strategy space is not only large but in fact prohibitively expensive to enumerate (think
about MoBA games like Dota 2 & StarCraft). Thus we focus more on meta-games: inducing the game via simulation

Assumption: Zero-sum, two-player EFG

G R A I N G E R E N G I N E E R I N G

Some “Recent” Advances: toward Competitive Games

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

If the meta-solver calculates the NE,
it degrades to Double Oracle

If the meta-solver selects the most recently added
strategy, it degrades to self-play

Research Advance + GPU computing Power = Remarkable Progress

G R A I N G E R E N G I N E E R I N G

Some “Recent” Advances: toward Competitive Games

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

[1]R. Bellman, “A Markovian Decision Process,” Indiana Univ. Math. J., vol. 6, no. 4, pp. 679–684, 1957.

[2]L. S. Shapley, “Stochastic games,” Proceedings of the national academy of sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[3]R. A. Howard, “Dynamic programming and markov processes.,” 1960.

[4]C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[5]M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings of the tenth international conference on machine learning, 1993,
pp. 330–337.

[6]M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in Machine learning proceedings 1994, Elsevier, 1994, pp. 157–163.

[7]J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039–1069, 2003.

[8]G. W. Brown, “Iterative solution of games by fictitious play,” Act. Anal. Prod Allocation, vol. 13, no. 1, p. 374, 1951.

[9]J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in extensive-form games,” in International conference on machine learning, 2015, pp. 805–813.

[10] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016.

[11]H. B. McMahan, G. J. Gordon, and A. Blum, “Planning in the presence of cost functions controlled by an adversary,” in Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 2003, pp. 536–543.

[11]M. Lanctot et al., “A unified game-theoretic approach to multiagent reinforcement learning,” Advances in neural information processing systems, vol. 30, 2017.

[12]O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[13]N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,” Science, vol. 365, no. 6456, pp. 885–890, 2019.

G R A I N G E R E N G I N E E R I N G

References

E L E C T R I C A L & C O M P U T E R E N G I N E E R I N G

