1[ILLINOIS

AAAAAAAAAAAAAAA

Game Theory and
Multi-Agent Learning: A Survey

11/30/2023

Problem Statement

Reinforcement Learning, Multi-Agent, and Game Theory

1. Reinforcement Learning is a natural adaption & extension of behavioral psychology in machine learning: by
interacting with the environment and receive rewards, the agent learns to achieve some goals;

2. Multi-agent game is a universal scenario setup: multiple agents act in the same environment, and their
actions interacts with each other;

3. Where there is a multi-agent game, there is game theory;

4. If we want to use reinforcement learning algos to teach agents to play the multi-agent game, we need to
incorporate game theory to the algorithm;

Prerequisite

Markov Decision Process (MDP)
Setup: (.S, A, T, R): states, actions, transition function S X A X .8 — [0,1], rewards function S X A —> R
Problem Statement: solving MDP means to find a policy function ;.8 — A that satisfies a specific goal

Under a given policy &, we can measure the value of taking a specific action on a specific state, as well as the value of a
specific state:
(1)

(2) Q"(s,a) =E" Z’VtR (8¢, A, Se11) |a0 = a, So = S] Vs €S,a e A

| t>0

Stochastic Game (SG) v (s) =& |3 v'R (s, a0 5011) 30=3] Vs €S
[t>0
Setup: (n, .S, A ., T, Ry _,): states, joint acuons, transiton tunction > X A; X O — [0,1], rewards function

R:SXA —-R

Problem Statement: find a policy function z;:.§ X A, — [0,1] that satisfies a specific goal

Flashback: Solving MDP with Model from RL perspective

Value Iteration for Solving MDP (Bellman, 1957)

Assumption: transition function f(.S, A) — .5 and reward function g(.5, A) — R both known (quite strong
assumption!)

|dea: at each state, search over all possible actions, calculate the one with highest discounted rewards, and pick it

Calculate long-term valuation

for each possible action a;

Greedily update
For each state s,

policy: z(s;) = a
Update state valuation: A/

V(Si) = Q(Si, ai*)

Flashback: Solving MDP with Model from RL perspective

Policy Iteration for Solving MDP (Howard, 1960)

Assumption: transition function (.S, A) — S" and reward function g(.S, A) — R both known (quite strong
assumption!)

Idea: start from a policy x;, evaluate its value (Eq (2)), and update the policy if improvement available

Calculate long-term valuation
for all states s; under this

policy

For fixed poli For each state s i find
or fixed polic
e POIEY 7k the best action a*

J
Update policy: A/

ﬂk+1(Sj) — a}k

Flash-now: Solving SG with Model from Game Theory perspective

Value Iteration for Solving Stochastic Game (Sharpley, 1953)

Assumption: 1. transition function (.S, A) — 5" and reward function g(.5, A) — R both known;

) 7arAn_ciim AamMao

1. Initialize V' arbitrarily.

Construct a
Matrix Game
from all A

2. Repeat,

(a) For each state, s € S, compute the matrix,

G, (V) = [gaeA :

(b) For each state, s € S, update V,
V(s) < Value [Gs(V)].

—
stead of max{} in SR case, solve t
matrix game for MR

Flashback: Solving MDP w/o Model from RL perspective

Q-Learning for Solving MDP (Watkins, 1989)

|ldea: without explicitly knowing the transition and reward function (thus no accurate Q value), use temporal-diff to appx
| Algorithm 7.3: Optimal policy learning via Q-learning (off-policy version)

Initialization: Initial guess qy(s,a) for all (s,a). Behavior policy m(als) for all (s,a).
a;(s,a) = a > 0 for all (s,a) and all t.

Goal: Learn an optimal target policy mp for all states from the experience samples
generated by .

For each episode {so, ag, 1, S1,a1,72,. ..} generated by 7, do
For each step t =0, 1,2, ... of the episode, do
Update g-value for (s, a;):

Qt+1(8t7 at) = C]t(St, at) - at(St, at) Q(St, at) - (Tt+1 + v max, Qt(3t+17 a))]
ddate target policy for s;:

7TT,t+1(a|3t) = 1if a = argmax, ¢;41(s¢,a)

mr.+1(als;) = 0 otherwise

Iteratively
estimate

q(s, a)

Greedily take the
eptimal action

Flash-now: Solving SG w/o Model from RL perspective

IndeQ-Learning (Tan, 1993)

|dea: treat other agents as a part of the environment, each agent trains via Q-learning in a decentralized manner

Environment

State
Reward

Action -

State Action State Action
Reward Reward

\ 4

Agent Agent

Agentj

Critical issue: overfit to other agents’ policies!

Flash-now: Solving SG w/o Model from GT-Guided RL perspective

Minimax-Q and Nash-Q for Solving Stochastic Game

Minimax-Q (Littman, 1994) assumes two-player Zero-Sum game, while Nash-Q (Hu & Wellman, 2003) extends to
multi-player general-sum

1. Initialize Q(s € S, a € A) arbitrarily, and set « to be the learning rate.
2. Repeat,

(a) From state s select action a; that solves the matrix game [Q(s, a)ac A] , with some exploration.

(b) Observing joint-action a, reward r, and next state s’,

Q(s,a) + (1 —a)Q(s,a) + a(r +~7V (s")),

where,

V(s) = Value Q(s,a)aeA]) :

—

inimax-Q, it is solving:
(s) = maxmin 2 O(s,a,o)r,

T 0
aceA

r Nash-Q, it is solving: V(s) = Q(s) x?zl z"(s), wher
‘() is the NE at stage s

What We Have So Far

Good Points:

1. To solve multi-agent stochastic games, we explored three directions: purely reinforcement learning, purely game-
theoretical, and their mixture;

2. For normal form games with full observation, most follow-ups are developed based on Minimax-Q and Nash-Q;

Envi t | — N
3. A Formula for Innovation: Game Solver —|— nl\‘n'ggglrlr:n Algoern’hm

It’d be nice if we can:

1. Extend to extended form games

2. Handle real-world scenarios: how to deal with prohibitively large pure action spaces?

Flash-back: A Game Theoretical Approach to reach NE

Fictitious Play (Brown, 1951)

Assumption: the opponents play stationary strategies; zero-sum game

|ldea: based on opponents’ play history, choose the best response

1. Initialize V arbitrarily, U;(s € S,a € A;) < 0,and C;(s € S,a € A;) «+ 0.

2. Repeat: for every state s, let joint action a = (a1, az), such that a; = argmax, . 4. ggzz; :

Cq;(s,ai) — Cz-(s,ai) +1
Ui(s,a;) <+ U;(s,a;) + Ri(s,a) +7~ (E T(s,a, s')V(s'))
s'eS

Ui(s,a1)
Vis) + a1 ey C1(s,aq)

Then,

Flash-now: the Modern Variant of Fictitious Play

Extensive FP (Heinrich et al, 2015)

Pure Strategy: a sequence of deterministic actions;
Mix Strategy: a prob distribution over Pure Strategies;

Behaviour Strategy: a prob distribution over actions on a
particular information state;

Kuhn’s Theorem: there’s an equivalence between a BS and a MS
— solve EFG using FP in normal form games!

Some Followups:

1. Fictitious Self-Play: a “weakened” fictitious play framework,
uses a RL architecture to appx BR, supervised learning arch to
update strategy;

2. DFSP: uses neural network as the function appx;

Algorithm 1 Full-width extensive-form fictitious play

function FICTITIOUSPLAY(T)
Initialize 7, arbitrarily
g1
while within computational budget do
Bj+1 ¢ COMPUTEBRS(7;)
Tj+1 < UPDATEAVGSTRATEGIES(7j, Bj+1)
j—J+1
end while
return 7 ;
end function

function COMPUTEBRS(7)
Recursively parse the game’s state tree to compute a
best response strategy profile, 3 € b().
return

end function

function UPDATEAVGSTRATEGIES(7;, B+1)
Compute an updated strategy profile m;; according
to Theorem 7.
return 7;_

end function

Some “Recent” Advances: Dealing with Real-world Games

Double Oracle (McMahan, 2003)

In a real-world game, the opponents’s possible move space is numerously large, and we need to efficiently strategize
to optimise for the worse case;

Assumption: Zero-sum, two-player matrix game

|dea: by iteratively compute & update the strategy set of a subgame, we eventually reaches equilibrium;

Start w1 22 / Expand Restricted Game *\ /—)Terminate

mll | 2 | -1
Q_’ Restricted Game Compute Best Response

nl2 0 3
\ Solve Restricted Game /

Some “Recent” Advances: toward Competitive Games

Policy-Space Response Oracle (Lanctot, 2017)

In some real-world games, the strategy space is not only large but in fact prohibitively expensive to enumerate (think
about MoBA games like Dota 2 & StarCraft). Thus we focus more on meta-games: inducing the game via simulation

Assumption: Zero-sum, two-player EFG

Algorithm 1 A General Solver for Open-Ended Meta-Games

1: Initialise: the “high-level” policy set S =[], ., S*, the meta-
and meta-policy w* = UNIFORM(S").

. for iteration ¢t € {1,2,...} do:

for each player i € N do:
Compute the meta-policy 7r; by meta-game solver S(My).
Find a new policy against others by Oracle: S! = ‘
Expand S}, < S} U {S;} and update meta-payo

terminate if: Si,, =S, Vi e N.

: Return: 7 and S.

e N W RN P

If the meta-solver calculates the NE,
it degrades to Double Oracle

e meta-solver selects the most recently added
strateqgy, it degrades to self-play

S N A Ol

Some “Recent” Advances: toward Competitive Games

Research Advance + GPU computing Power = Remarkable Progress

Jan 2016 Dec 2017 July 2018 Jan 2019 Apr 2019 July 2019 Sep 2019

AlphaGO Series

AlphaStar (DeepMind) Pluribus Poker (FAIR)

O o

*0 AlphaGo

9
milestone of single-agent FL:E
decision-making technique

Capture-the-flag (DeepMind)

References

[1]R. Bellman, “A Markovian Decision Process,” Indiana Univ. Math. J., vol. 6, no. 4, pp. 679-684, 1957.

[2]L. S. Shapley, “Stochastic games,” Proceedings of the national academy of sciences, vol. 39, no. 10, pp. 1095-1100, 1953.
[3]R. A. Howard, “Dynamic programming and markov processes.,” 1960.

[4]C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[5]M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings of the tenth international conference on machine learning, 1993,
pp. 330-337.

[6]M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in Machine learning proceedings 1994, Elsevier, 1994, pp. 157-163.
[7]J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic games,” Journal of machine learning research, vol. 4, no. Nov, pp. 1039-1069, 2003.
[8]G. W. Brown, “Iterative solution of games by fictitious play,” Act. Anal. Prod Allocation, vol. 13, no. 1, p. 374, 1951.

[9]J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in extensive-form games,” in International conference on machine learning, 2015, pp. 805-813.
[10] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016.

[11]H. B. McMahan, G. J. Gordon, and A. Blum, “Planning in the presence of cost functions controlled by an adversary,” in Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 2003, pp. 536-543.

[11]M. Lanctot et al., “A unified game-theoretic approach to multiagent reinforcement learning,” Advances in neural information processing systems, vol. 30, 2017.
[12]0. Vinyals et al., “Grandmaster level in StarCraft Il using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350-354, 2019.
[13]N. Brown and T. Sandholm, “Superhuman Al for multiplayer poker,” Science, vol. 365, no. 6456, pp. 885-890, 2019.

The Grainger College
of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

