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Reinforcement Learning, Multi-Agent, and Game Theory 
1. Reinforcement Learning is a natural adaption & extension of behavioral psychology in machine learning: by 
interacting with the environment and receive rewards, the agent learns to achieve some goals; 

2. Multi-agent game is a universal scenario setup: multiple agents act in the same environment, and their 
actions interacts with each other; 

3. Where there is a multi-agent game, there is game theory; 

4. If we want to use reinforcement learning algos to teach agents to play the multi-agent game, we need to 
incorporate game theory to the algorithm; 
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Markov Decision Process (MDP)  
Setup:  states, actions, transition function , rewards function  

Problem Statement: solving MDP means to find a policy function  that satisfies a specific goal 

Under a given policy , we can measure the value of taking a specific action on a specific state, as well as the value of a 
specific state:  

                

   

Stochastic Game (SG) 
Setup:  states, joint actions, transition function , rewards function 

 

Problem Statement: find a policy function  that satisfies a specific goal

(𝑆, 𝐴, 𝑇, 𝑅): 𝑆 × 𝐴 × 𝑆 → [0,1] 𝑆 × 𝐴 → ℝ

𝜋 :𝑆 → 𝐴

𝜋

(1)

(2)

(𝑛, 𝑆, 𝐴1,…,𝑛, 𝑇, 𝑅1,…,𝑛): 𝑆 × 𝐴1,…,𝑛 × 𝑆 → [0,1]
𝑅𝑖:𝑆 × 𝐴𝑖 → ℝ

𝜋𝑖:𝑆 × 𝐴𝑖 → [0,1]
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Prerequisite
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Value Iteration for Solving MDP (Bellman, 1957) 

Assumption: transition function  and reward function  both known (quite strong 
assumption!) 

Idea: at each state, search over all possible actions, calculate the one with highest discounted rewards, and pick it

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ
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Flashback: Solving MDP with Model from RL perspective
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For each state 𝑠𝑖

Calculate long-term valuation 
for each possible action 𝑎𝑗

Greedily update 
policy: 𝜋(𝑠𝑖) = 𝑎∗

𝑖

Update state valuation: 
𝑉 (𝑠𝑖) = 𝑞(𝑠𝑖, 𝑎∗

𝑖 )



Policy Iteration for Solving MDP (Howard, 1960) 

Assumption: transition function  and reward function  both known (quite strong 
assumption!) 

Idea: start from a policy , evaluate its value (Eq (2)), and update the policy if improvement available

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ

𝜋𝑖
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Flashback: Solving MDP with Model from RL perspective
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For fixed policy 𝜋𝑘

Calculate long-term valuation 
for all states  under this 

policy
𝑠𝑖

For each state , find 
the best action 

𝑠𝑗
𝑎∗

𝑗

Update policy: 
𝜋𝑘+1(𝑠𝑗) = 𝑎∗

𝑗



Value Iteration for Solving Stochastic Game (Sharpley, 1953) 
 
Assumption: 1. transition function  and reward function  both known;  
                     2. Zero-sum game

𝑓(𝑆, 𝐴) → 𝑆′ 𝑔(𝑆, 𝐴) → ℝ

G R A I N G E R  E N G I N E E R I N G

Flash-now: Solving SG with Model from Game Theory perspective
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Construct a 
Matrix Game 
from all A

Instead of  in SR case, solve the 
matrix game for MR

𝑚𝑎𝑥{}



Q-Learning for Solving MDP (Watkins, 1989) 
Idea: without explicitly knowing the transition and reward function (thus no accurate Q value), use temporal-diff to appx
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Flashback: Solving MDP w/o Model from RL perspective
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Greedily take the 
optimal action

Iteratively 
estimate 
q(s, a)



IndeQ-Learning (Tan, 1993) 
Idea: treat other agents as a part of the environment, each agent trains via Q-learning in a decentralized manner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Critical issue: overfit to other agents’ policies!
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Flash-now: Solving SG w/o Model from RL perspective
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Environment

𝐀𝐠𝐞𝐧𝐭𝑖

𝐀𝐠𝐞𝐧𝐭𝑗

𝐀𝐠𝐞𝐧𝐭𝑘

Action

State 
Reward

Action State 
Reward

Action

State 
Reward



Minimax-Q and Nash-Q for Solving Stochastic Game 
Minimax-Q (Littman, 1994) assumes two-player Zero-Sum game, while Nash-Q (Hu & Wellman, 2003) extends to 
multi-player general-sum
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Flash-now: Solving SG w/o Model from GT-Guided RL perspective
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For Nash-Q, it is solving: , where 

 is the NE at stage s

𝑉 (𝑠) = 𝑄(𝑠) ×𝑛
𝑗=1 𝜋𝑛(𝑠)

𝜋𝑖(𝑠)

For minimax-Q, it is solving: 
𝑉 (𝑠) = 𝑚𝑎𝑥

𝜋
𝑚𝑖𝑛

𝑜 ∑
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝑜)𝜋𝑎



Good Points:  
1. To solve multi-agent stochastic games, we explored three directions: purely reinforcement learning, purely game-
theoretical, and their mixture; 

2. For normal form games with full observation, most follow-ups are developed based on Minimax-Q and Nash-Q; 
 

3. A Formula for Innovation:                

It’d be nice if we can: 
1. Extend to extended form games 

2. Handle real-world scenarios: how to deal with prohibitively large pure action spaces?
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What We Have So Far
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Game Solver + Environment 
Modeller = New 

Algorithm



Fictitious Play (Brown, 1951) 
Assumption: the opponents play stationary strategies; zero-sum game 

Idea: based on opponents’ play history, choose the best response

G R A I N G E R  E N G I N E E R I N G

Flash-back: A Game Theoretical Approach to reach NE
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Extensive FP (Heinrich et al, 2015) 
Pure Strategy: a sequence of deterministic actions; 

Mix Strategy: a prob distribution over Pure Strategies; 

Behaviour Strategy: a prob distribution over actions on a  
                                 particular information state; 

Kuhn’s Theorem: there’s an equivalence between a BS and a MS 
                             solve EFG using FP in normal form games! 

Some Followups: 
 
1. Fictitious Self-Play: a “weakened” fictitious play framework,  
uses a RL architecture to appx BR, supervised learning arch to  
update strategy; 
 
2. DFSP: uses neural network as the function appx;

→
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Flash-now: the Modern Variant of Fictitious Play
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Double Oracle (McMahan, 2003) 
In a real-world game, the opponents’s possible move space is numerously large, and we need to efficiently strategize 
to optimise for the worse case; 

Assumption: Zero-sum, two-player matrix game 

Idea: by iteratively compute & update the strategy set of a subgame, we eventually reaches equilibrium;
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Some “Recent” Advances: Dealing with Real-world Games
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Policy-Space Response Oracle (Lanctot, 2017) 
In some real-world games, the strategy space is not only large but in fact prohibitively expensive to enumerate (think 
about MoBA games like Dota 2 & StarCraft). Thus we focus more on meta-games: inducing the game via simulation 

Assumption: Zero-sum, two-player EFG
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Some “Recent” Advances: toward Competitive Games
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If the meta-solver calculates the NE, 
it degrades to Double Oracle

If the meta-solver selects the most recently added 
strategy, it degrades to self-play



Research Advance + GPU computing Power = Remarkable Progress
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Some “Recent” Advances: toward Competitive Games
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