More Goods Are All You Need

An asymptotically improved EFX approximation

Alex Desjardins & Ryan Ziegler

November 30, 2023

University of Illinois Urbana-Champaign

- 1. [Preliminaries](#page-2-0)
	- [Valuations](#page-4-0)
	- [Notions of Fairness](#page-7-0)
	- [Existing Results](#page-8-0)
- 2. [Our Results](#page-9-0)
	- [Our Algorithm](#page-11-0)
	- [Output Analysis](#page-13-0)
- 3. [Future Work](#page-19-0)

[Preliminaries](#page-2-0)

- \cdot Agents $\{1,\ldots,n\}$ and a set *X* of m indivisible goods g_1,\ldots,g_m
- \cdot Each agent *i* has a valuation function $v_i : \mathcal{P}(X) \rightarrow \mathbb{R}_+$
	- Common restrictions: submodular, additive, ...
- \cdot An allocation (X_1, \ldots, X_n) gives goods in X_i to each agent *i*, satisfying $X_i \cap X_i = ∅$ for all *i*, *j*, and $∪X_i \subseteq X$
	- Unallocated goods are said to go to "charity"[[4](#page-21-0)]
- An *instance ⟨n, {v*¹ *, . . . , vn}, X⟩* consists of agents, valuation functions, and the pool of goods

We focus our attention on *additive* valuations, which satisfy $v_i(X') = \sum_{X \in X'} v_i(X)$ for all $X' \subseteq X$

Definition

For valuation *v* and set *X*, denote $x_i^{(v)}$ *i* to be the item of rank *i* when ordering *X* by *v*, ascending

Definition (*d*-difference bounded)

 $v: X \rightarrow \mathbb{R}_+$ is d -difference bounded if $v(x_i^{(v)})$ $y_i^{(v)}$ + *d* $\geq v(x_{i+1}^{(v)})$ $\binom{V}{i+1}$ for all $i < |X|$, and $v(x_1^{(v)}) \leq d$. An allocation instance is *d*-difference bounded, if for each agent *i*, there is some *dⁱ* so that *vⁱ* is d_i -difference bounded and $d = \max_i d_i$.

Definition (*σ*-difference required)

 $v: X \rightarrow \mathbb{R}_+$ is σ -difference required if $v(x_{i+1}^{(v)})$ *i*+1) *− v*(*x* (*v*) $\sigma_j^{(V)}$) $\geq \sigma$ for all $i <$ |X|, and *v*($x_1^{(\nu)}$) \geq *σ*. An allocation instance is *σ*-difference required, if for each agent *i*, there is some σ_i so that v_i is *σi*-difference required and *σ* = min*ⁱ σⁱ* .

ρ-uniform Instances

Definition (*ρ*-uniform)

An allocation instance is (σ, d) -differing if it is σ -difference required and *d*-difference bounded. We call $\rho = \frac{\sigma}{d}$ the *uniformity* of the instance.

Intuitively, ρ is a measure of how evenly spread item valuations are: $\rho = 1$ occurs when items are ranked (up to a constant factor) 1, 2, \ldots , $m, \rho = 0$ occurs when there are two items with the same value (a degenerate instance).

Theorem([\[2](#page-21-1)])

If an EFX allocation always exists for n agents with non-degenerate additive valuation functions, then an EFX allocation always exists for n agents with any additive valuation functions.

Corollary

For any allocation instance, we can assume wlog ρ > 0*.*

Definition

Agent *i* envies agent *j* if $v_i(X_i) < v_i(X_i)$

Definition

Agent *i* strongly envies agent *j* if $v_i(X_i) < v_i(X_i \setminus h)$ $\forall h \in X_i$

Definition ([[1](#page-21-2)])

An allocation (*X*¹ *, . . .*) is *EFX* if no agent strongly envies another

Definition

An allocation is *α*-EFX if *vi*(*Xi*) *≥ αvi*(*X^j \ h*) for all *h ∈ X^j* .

Theorem([\[6\]](#page-22-0))

For n agents with additive valuations, there exists a 1*/*2*-EFX allocation.*

Theorem([\[3](#page-21-3)])

For n agents with additive valuations, there exists a 0*.*618*-EFX allocation.*

[Our Results](#page-9-0)

Theorem

For a ρ-uniform valuation instance with m $\geq \frac{4n^2}{a}$ *ρ , there exists a* $\left(1 - \frac{4n^3}{\omega m^3}\right)$ *ρm*²) *-EFX allocation, and it can be computed in polytime.*

Note: Yesterday we improved the bound to $\left(1 - \frac{n^3}{2\pi}\right)$ $\left(\frac{n^3}{\rho m^2}\right)$ and removed the $m \geq \frac{4n^2}{a}$ $\frac{n}{\rho}$ requirement, but still need to review it more thoroughly. For $n = 4$ agents and $\rho = 0.01$, this is better than 0.618-EFX when *m ≥* 130.

Definition (Envy Graph)

Given a partial allocation (*X*¹ *, . . . , Xn*), define the envy graph $G^{E} = ([n], \{i \rightarrow j : v_i(X_i) < v_i(X_j)\}.$

Lemma([\[5](#page-22-1)])

If cycles exist in G^E , bundles may be swapped so that G^E ′ is acyclic.

Assume *m* = *cn* for some *c*, and start with all items unallocated. Let *G ^E* be the envy graph. Play *c* rounds as follows:

- 1. Compute a topological ordering of *G E*
- 2. In this order, allow agents to pick their most valued available item
- 3. If envy cycles exist in G^E, eliminate them following the procedure described in lecture[[5](#page-22-1)]

Lemma (Envy from Topological Assignment)

After each round, $v_i(X_i) - v_i(X_i) \leq dn$.

Proof.

By induction. First, consider the first round. Agent 1 picks their favorite item. Then, agent 2 picks their favorite item, or if agent 1 took their favorite item, then agent 2 gets their 2nd favorite item. This continues, up until agent *n*, who gets at worst their (*n*)th favorite item. Since the valuations are *d*-difference bounded, the difference in agent *n*'s value of his favorite and nth favorite items is at most *d*(*n −* 1). In the worst case, agent *n* gets her *n*th favorite item and another agent *j* got her favorite item, so *v*_{*n*}(*X*_{*i*}) − *v*_{*n*}(*X*_{*n*}) ≤ *d*(*n* − 1) ≤ *dn*. No agent gets worse than their *n*th favorite item in the first round, so the claim holds.

Bounding Envy Cont.

Proof.

Now suppose we have completed an arbitrary round *k*. Consider arbitrary *i* and *j*. Let *gⁱ* and *g^j* be the goods picked by agents *i* and *j* this round, respectively. Let X_i and X_j be the bundles of *i* and *j* before entering this round. By induction, we know that *v*_{*i*}(X ^{*j*}) − *v*_{*i*}(X ^{*j*}) ≤ *dn*. We want to prove this inequality for *v*_{*i*}(X_i *∪* g_i) *− v_i*(X_i *∪* g_i) as well. We have two cases:

1. Agent *i* picked before agent *j*. Then we know that $v_i(g_i) \ge v_i(g_i) \implies v_i(g_i) - v_i(g_i) \le 0$, since agent *i* picked before agent *j* and chose item *gⁱ* over item *g^j* . Thus, after the *kth* round, agent *i* has bundle *Xⁱ ∪ gⁱ* and agent *j* has bundle *X^j ∪ g^j* . Then

$$
v_i(X_j \cup g_j) - v_i(X_i \cup g_i) = v_i(X_j) - v_i(X_i) + v_i(g_j) - v_i(g_i) \le v_i(X_j) - v_i(X_i) \le dn
$$

Bounding Envy Cont.

Proof.

2. Agent *j* picked before agent *i*. But, since we picked in *topological order*, agent *i* did not envy agent *j*'s bundle before the start of this round. Thus, $v_i(X_i) - v_i(X_i) \leq 0$. Now, we notice that the maximum amount agent *i* prefers *g^j* over *gⁱ* is *d*(*n −* 1) (similar reasoning as in the base case). Thus, $v_i(q_i) - v_i(q_i) \leq dn$. This gives us

$$
v_i(X_j \cup g_j) - v_i(X_i \cup g_i) = v_i(X_j) - v_i(X_i) + v_i(g_j) - v_i(g_i) \le v_i(g_j) - v_i(g_i) \le dn
$$

Now, we observe that envy cycle elimination preserves these pairwise inequalities: each agent in the cycle gets a bundle they previously envied, so their value of their bundles strictly increases. Other edges are shifted, but the inequalites remain since bundles are not modified.

Approximating EFX

Theorem

For a ρ-uniform valuation instance with m $\geq \frac{4n^2}{\rho}$ *ρ , there exists a* $\left(1 - \frac{4n^3}{\omega m^3}\right)$ *ρm*²) *-EFX allocation, and it can be computed in polytime.*

Proof.

Consider agents *i* and *j*. If $v_i(X_i) \ge v_i(X_i)$, we are done, so assume otherwise. By the previous lemma,

$$
v_i(X_i) \geq v_i(X_j) - dn
$$

Let *eij* = *vi*(*Xj*) *−* min*^x∈X^j vi*(*X*). We can rewrite the above in terms of *eij* as follows:

$$
v_i(X_i) \ge e_{ij} \left(1 - \frac{dn - \min_{x \in X_j} v_i(x)}{v_i(X_j) - \min_{x \in X_j} v_i(x)}\right)
$$

Approximating EFX Cont.

Proof.

Since valuations are (σ, d) -differing, we have

$$
v_i(X_i) \geq e_{ij}\left(1-\frac{dn}{\sigma\frac{\frac{m}{n}(\frac{m}{n}+1)}{2}-(dm-\sigma\frac{m}{n})}\right) \geq e_{ij}\left(1-\frac{dn}{\sigma\frac{m^2}{2n^2}-dm}\right)
$$

We can factor out a *d*:

$$
v_i(X_i) \geq e_{ij}\left(1-\frac{n}{\frac{m^2\rho}{2n^2}-m}\right)
$$

And from here, we may simplify algebraically:

$$
v_i(X_i) \ge e_{ij}\left(1-\frac{n}{m\left(\frac{m\rho}{2n^2}-1\right)}\right) \ge e_{ij}\left(1-\frac{n}{\frac{m^2\rho}{4n^2}}\right) = e_{ij}\left(1-\frac{4n^3}{\rho m^2}\right)
$$

Since the instance is (σ, d) -differing, we can add at most *n* − 1 items each agent values at 0, and will not affect our proofs: instance is still *d*-difference bounded, and consecutive items still have spacing at least *σ*. The previous proof will have (*m/n −* 1) instead of (*m/n* + 1), but this doesn't change much.

[Future Work](#page-19-0)

Our Failed Ideas

- Instead of topological order, order agents by valuation of their bundle.
	- \cdot Seems to have good MMS guarantees for $\rho = 1$, but does not work well for smaller *ρ*
	- What might work: sort agents by fraction of total value obtained (i.e. *vi*(*Xi*)*/vi*(*X*))
- Chip firing games: The following procedure seems to always converge to an EFX allocation regardless of valuations:
	- 1. While there is strong envy from *i* to *j*, donate an item from *j* to *i*
- Conjecture: EFX existence could be demonstrated using combinatorial techniques similar to chip firing stability results
- Conjecture: our result holds for bounded marginals
- Our EFX approximation could probably be improved by being more flexible in assigning items - post-topological assignment item movement might be low-hanging fruit

References i

- E. I. Caragiannis, N. Gravin, and X. Huang. Envy-freeness up to any item with high nash welfare: The virtue of donating items. *CoRR*, abs/1902.04319, 2019.
- **B. R. Chaudhury, J. Garg, and K. Mehlhorn.** EFX exists for three agents. *CoRR*, abs/2002.05119, 2020.
- Ħ B. R. Chaudhury, J. Garg, K. Mehlhorn, R. Mehta, and P. Misra. Improving EFX guarantees through rainbow cycle number. *CoRR*, abs/2103.01628, 2021.
- B. R. Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa. A little charity guarantees almost envy-freeness. *CoRR*, abs/1907.04596, 2019.

暈 R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of indivisible goods. In *Proceedings of the 5th ACM Conference on Electronic Commerce*, EC '04, page 125–131, New York, NY, USA, 2004. Association for Computing Machinery.

B. Plaut and T. Roughgarden. Almost envy-freeness with general valuations. *CoRR*, abs/1707.04769, 2017.