
More Goods Are All You Need
An asymptotically improved EFX approximation

Alex Desjardins & Ryan Ziegler
November 30, 2023

University of Illinois Urbana-Champaign



Table of contents

1. Preliminaries

Valuations

Notions of Fairness

Existing Results

2. Our Results

Our Algorithm

Output Analysis

3. Future Work

1



Preliminaries



Background

• Agents {1, . . . ,n} and a set X of m indivisible goods g1, . . . , gm
• Each agent i has a valuation function vi : P(X) → R+

• Common restrictions: submodular, additive, ...
• An allocation (X1, . . . , Xn) gives goods in Xi to each agent i,
satisfying Xi ∩ Xj = ∅ for all i, j, and ∪Xi ⊆ X

• Unallocated goods are said to go to “charity” [4]

• An instance ⟨n, {v1, . . . , vn}, X⟩ consists of agents, valuation
functions, and the pool of goods
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Characterizing Valuation Functions

We focus our attention on additive valuations, which satisfy
vi(X′) =

∑
x∈X′ vi(x) for all X′ ⊆ X

Definition
For valuation v and set X, denote x(v)i to be the item of rank i when
ordering X by v, ascending
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(σ,d)-differing Valuations

Definition (d-difference bounded)
v : X→ R+ is d-difference bounded if v(x(v)i ) + d ≥ v(x(v)i+1) for all
i < |X|, and v(x(v)1 ) ≤ d. An allocation instance is d-difference
bounded, if for each agent i, there is some di so that vi is
di-difference bounded and d = maxi di.

Definition (σ-difference required)
v : X→ R+ is σ-difference required if v(x(v)i+1)− v(x(v)i ) ≥ σ for all
i < |X|, and v(x(v)1 ) ≥ σ. An allocation instance is σ-difference
required, if for each agent i, there is some σi so that vi is
σi-difference required and σ = mini σi.
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ρ-uniform Instances

Definition (ρ-uniform)
An allocation instance is (σ,d)-differing if it is σ-difference required
and d-difference bounded. We call ρ = σ

d the uniformity of the
instance.

Intuitively, ρ is a measure of how evenly spread item valuations are:
ρ = 1 occurs when items are ranked (up to a constant factor)
1, 2, . . . ,m, ρ = 0 occurs when there are two items with the same
value (a degenerate instance).

Theorem ([2])
If an EFX allocation always exists for n agents with non-degenerate
additive valuation functions, then an EFX allocation always exists
for n agents with any additive valuation functions.

Corollary
For any allocation instance, we can assume wlog ρ > 0.
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Envy

Definition
Agent i envies agent j if vi(Xi) < vi(Xj)

Definition
Agent i strongly envies agent j if vi(Xi) < vi(Xj \ h) ∀h ∈ Xj

Definition ([1])
An allocation (X1, . . . ) is EFX if no agent strongly envies another
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EFX Approximations

Definition
An allocation is α-EFX if vi(Xi) ≥ αvi(Xj \ h) for all h ∈ Xj.

Theorem ([6])
For n agents with additive valuations, there exists a 1/2-EFX
allocation.

Theorem ([3])
For n agents with additive valuations, there exists a 0.618-EFX
allocation.
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Our Results



An asymptotically improved EFX approximation factor

Theorem
For a ρ-uniform valuation instance with m ≥ 4n2

ρ , there exists a(
1− 4n3

ρm2

)
-EFX allocation, and it can be computed in polytime.

Note: Yesterday we improved the bound to
(
1− n3

ρm2

)
and removed

the m ≥ 4n2
ρ requirement, but still need to review it more thoroughly.

For n = 4 agents and ρ = 0.01, this is better than 0.618-EFX when
m ≥ 130.
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The Envy Graph

Definition (Envy Graph)
Given a partial allocation (X1, . . . , Xn), define the envy graph
GE = ([n], {i→ j : vi(Xi) < vi(Xj)}.

Lemma ([5])
If cycles exist in GE, bundles may be swapped so that GE′ is acyclic.
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Topological Assignment

Assume m = cn for some c, and start with all items unallocated. Let
GE be the envy graph. Play c rounds as follows:

1. Compute a topological ordering of GE

2. In this order, allow agents to pick their most valued available
item

3. If envy cycles exist in GE, eliminate them following the procedure
described in lecture [5]
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Bounding Envy

Lemma (Envy from Topological Assignment)
After each round, vi(Xj)− vi(Xi) ≤ dn.

Proof.
By induction. First, consider the first round. Agent 1 picks their
favorite item. Then, agent 2 picks their favorite item, or if agent 1
took their favorite item, then agent 2 gets their 2nd favorite item.
This continues, up until agent n, who gets at worst their (n)th
favorite item. Since the valuations are d-difference bounded, the
difference in agent n’s value of his favorite and nth favorite items is
at most d(n− 1). In the worst case, agent n gets her nth favorite
item and another agent j got her favorite item, so
vn(Xj)− vn(Xn) ≤ d(n− 1) ≤ dn. No agent gets worse than their nth
favorite item in the first round, so the claim holds.
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Bounding Envy Cont.

Proof.
Now suppose we have completed an arbitrary round k. Consider
arbitrary i and j. Let gi and gj be the goods picked by agents i and j
this round, respectively. Let Xi and Xj be the bundles of i and j
before entering this round. By induction, we know that
vi(Xj)− vi(Xi) ≤ dn. We want to prove this inequality for
vi(Xj ∪ gj)− vi(Xi ∪ gi) as well. We have two cases:

1. Agent i picked before agent j. Then we know that
vi(gi) ≥ vi(gj) =⇒ vi(gj)− vi(gi) ≤ 0, since agent i picked before
agent j and chose item gi over item gj. Thus, after the kth round,
agent i has bundle Xi ∪ gi and agent j has bundle Xj ∪ gj. Then

vi(Xj∪gj)−vi(Xi∪gi) = vi(Xj)−vi(Xi)+vi(gj)−vi(gi) ≤ vi(Xj)−vi(Xi) ≤ dn
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Bounding Envy Cont.

Proof.
2. Agent j picked before agent i. But, since we picked in topological
order, agent i did not envy agent j’s bundle before the start of
this round. Thus, vi(Xj)− vi(Xi) ≤ 0. Now, we notice that the
maximum amount agent i prefers gj over gi is d(n− 1) (similar
reasoning as in the base case). Thus, vi(gj)− vi(gi) ≤ dn. This
gives us

vi(Xj∪gj)−vi(Xi∪gi) = vi(Xj)−vi(Xi)+vi(gj)−vi(gi) ≤ vi(gj)−vi(gi) ≤ dn

Now, we observe that envy cycle elimination preserves these
pairwise inequalities: each agent in the cycle gets a bundle they
previously envied, so their value of their bundles strictly increases.
Other edges are shifted, but the inequalites remain since bundles
are not modified.
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Approximating EFX

Theorem
For a ρ-uniform valuation instance with m ≥ 4n2

ρ , there exists a(
1− 4n3

ρm2

)
-EFX allocation, and it can be computed in polytime.

Proof.
Consider agents i and j. If vi(Xi) ≥ vi(Xj), we are done, so assume
otherwise. By the previous lemma,

vi(Xi) ≥ vi(Xj)− dn

Let eij = vi(Xj)−minx∈Xj vi(X). We can rewrite the above in terms of
eij as follows:

vi(Xi) ≥ eij
(
1−

dn−minx∈Xj vi(x)
vi(Xj)−minx∈Xj vi(x)

)
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Approximating EFX Cont.

Proof.
Since valuations are (σ,d)-differing, we have

vi(Xi) ≥ eij

1− dn

σ
m
n (

m
n +1)
2 −

(
dm− σm

n
)
 ≥ eij

(
1− dn

σ m2

2n2 − dm

)

We can factor out a d:

vi(Xi) ≥ eij

(
1− n

m2ρ
2n2 −m

)

And from here, we may simplify algebraically:

vi(Xi) ≥ eij

(
1− n

m
(mρ
2n2 − 1

)) ≥ eij

(
1− n

m2ρ
4n2

)
= eij

(
1− 4n3

ρm2

)
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When m ̸= cn?

Since the instance is (σ,d)-differing, we can add at most n− 1 items
each agent values at 0, and will not affect our proofs: instance is still
d-difference bounded, and consecutive items still have spacing at
least σ. The previous proof will have (m/n− 1) instead of (m/n+ 1),
but this doesn’t change much.
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Future Work



Our Failed Ideas

• Instead of topological order, order agents by valuation of their
bundle.

• Seems to have good MMS guarantees for ρ = 1, but does not work
well for smaller ρ

• What might work: sort agents by fraction of total value obtained
(i.e. vi(Xi)/vi(X))

• Chip firing games: The following procedure seems to always
converge to an EFX allocation regardless of valuations:
1. While there is strong envy from i to j, donate an item from j to i

• Conjecture: EFX existence could be demonstrated using
combinatorial techniques similar to chip firing stability results

• Conjecture: our result holds for bounded marginals
• Our EFX approximation could probably be improved by being
more flexible in assigning items - post-topological assignment
item movement might be low-hanging fruit
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