118 5 Termination

polynomial simplification order that has domain A and employs only poly-
nomials whose degree is bounded by k. For this purpose, the coeflicients
of the polynomials are treated as existentially quantified variables in the
decision procedure. The main problem with this approach is, of course, the
high complexity of Tarski’s decision procedure for the first-order theory of
real numbers.

5.4.2 Recursive path orders

The main idea underlying recursive path orders is that two terms are com-
pared by first comparing their root symbols, and then recursively comparing
the collections of their immediate subterms. These collections can be seen
as unordered multisets (which yields the multiset path order), or as ordered
tuples (which yields the lexicographic path order), or one can employ a com-
bination of both (which yields the recursive path order with status). In the
following, we consider the lexicographic path order in more detail.

Definition 5.4.12 Let X be a finite signature and > be a strict order on X.
The lexicographic path order >, on T'(X,V) induced by > is defined
as follows: s >, t iff

(LPO1) t € Var(s) and s #t, or
(LPO2) s = f(s1,...,8m), t =g(t1,...,tn), and
(LPO2a) there exists i,1 < i < m, with s; >, t, or
(LPO2b) f>gand s>y t;forall j,1<j<n,or
(LPO2c) f = g, s >po t; for all j,1 < j < n, and there exists
i,1 <4 < m, such that s; =11,...,8—1 = t;_1 and s; >y t;.

This definition is recursive since in (LPO2a), (LPO2b), and (LPO2c) it
refers to the relation >, to be defined. Nevertheless, >, is well-defined
since the definition of s >, ¢ only refers to the relation >,, applied to pairs
of terms that are smaller than the pair s,¢. In (LPO2a), >,,, stands for the
reflexive closure of >, (and not for the lexicographic path order induced by
>). In (LPO2c), the collections of immediate subterms are compared with
respect to >, the n-fold lexicographic product of >, with itself, which
explains the name lezicographic path order. Before showing that >, is a
simplification order, we consider some examples.

Example 5.4.13 Let ¥ = {f,i,e}, where f is binary, ¢ is unary, and e is
a constant, and assume that i > f > e.

1. f(z,€e) >po x by (LPO1).
2. i(e) >y e by (LPO2a) since we have e >, e.

5.4 Simplification orders 119

3. i(f(z,v)) >po f(i(y),i(z)) by (LPO2b) since 7 > f and, by (LPO2c),
i(f(z,y)) >wo i(y) and i(f(z,y)) >io i(z). The preconditions for case
(LPO2c) are satisfied since we have i(f(z,¥)) >wo ¥, i((f(2,¥)) >po =
and f(x’ y) >ipo Y f(.’L‘, y) >lpo T by (LPO]-)

4. f(f(z,v), 2) >wo f(z, f(y, 2)) by (LPO2c) with ¢ = 1:

e f(f(z,y),2) > x: this holds because of (LPOL).
e f(f(z,9),2) >wo f(y,2): again, we have (LPO2c) with 7 = 1:

— f(f(2,9),2) >poy and f(f(2,y),2) >ipo 2: by (LPO1).
— f(z,y) >ipo y: by (LPO1).
o f(x,y) >po x: by (LPOL).

Theorem 5.4.14 For any strict order > on X, the induced lexicographic
path order >, is a simplification order on T'(X,V).

Proof (1) Before we can show transitivity, we need an auxiliary result, which
we prove by induction on |s| + |¢|:

$ > t implies Var(s) 2 Var(t).

In (LPO1), ¢t = z is a variable that occurs in s and thus Var(t) = {z} C
Var(s). In (LPO2a), s; >y, t yields Var(s) 2 Var(s;) 2 Var(t) by
induction. In (LPO2b) and (LPO2c), s >, t; for all j,1 < j < n,
yields Var(s) 2 Var(t;) for all 5,1 < j < n, by induction, and thus
Var(s) 2 Ui Var(t;) = Var(t).

(2) To show transitivity, we assume that r >, s and s >, t. We prove
T >ipo t by induction on |r| + |s| + |¢t|. Obviously, r >, s implies that r is
not a variable, and s >, ¢ implies that s is not a variable.

First, assume that ¢t = z is a variable. To obtain 7 >, t by (LPO1), it is
sufficient to show that the variable z occurs in r. Because of s >, t = «z,
we know that x occurs in s. In addition, as we have shown in (1), r >, s
implies Var(r) 2 Var(s), and thus z € Var(r).

Now, assume 7 = f(r1,...,711), $ = g(81,---,8m), and t = h(t1,...,tn).
First, we consider the two cases where one of the inequalities is due to
(LPO2a):

e 1 >, s is an instance of (LPO2a), i.e. there exists i,1 < 4 < [, such
that r; >, s. By induction, we obtain r; >, ¢, and thus r >, t
holds by (LPO2a).

® s >, t is an instance of (LPO2a), and r >, s is an instance of
(LPO2b) or (LPO2c). We have r >, s; for all j,1 < j < m, and
Si Zipo t for some 4,1 < 4 < m. By induction, r >, 8; >y t yields
T >Ipo t.

120 5 Termination

Thus, we may assume that both inequalities are due to (LPO2b) or (LPO2c).
This implies f > h and s >, t; for all 5,1 < j < 1. By induction, 7 >,
8 >ipo tj yields r >y, t; for all j,1 < 57 < 1. If f > h, this is sufficient to
obtain r >, t. Otherwise, we have f = g = h, and thus both inequalities are
due to (LPO2c). Now, r >, t can be shown as in the proof of transitivity of
the lexicographic product (where the induction hypothesis yields transitivity
for the subterms).

(3) Because we already know that >, is transitive, the subterm property
is proved if we succeed in showing that f(...,s,...) >y, s for all function
symbols f and terms s. If s = z is a variable, then f(...,s,...) >, s is an
instance of (LPO1). Otherwise, it is an instance of (LPO2a) since s >, s.

(4) Closure under substitutions, i.e. s >, t implies o(s) >, o(t) for all
terms s,t and all substitutions o, is shown by induction on |s| + |t|. For
(LPO1), t = z is a variable occurring in s and s # t. Thus, o(t) is a
strict subterm of o(s), and we obtain o(s) >, o(t) as a consequence of the
subterm property. In (LPO2a), s; >,, t implies o(s;) >, o(t) by induction.
Similar induction arguments apply in the remaining two cases.

(5) To show compatibility with YX-operations, we assume that s >y, t,
feX™ and sy,..., 81,841, --,50 € T(X,V). Then

f(sla cee 3 8i—1,8, 841, - - .,Sn) >lpo f(sl,' . -asi—17ta Sitl,y-- .,Sn)

is obtained as an instance of (LPO2c): the subterm property yields
F(S15++038i—1,5,8i41,---18n) >ipo S5

forall j € {1,...,i—1,i+1,...,n}, and f(s1,...,8i-1,8,8i+1,--->5n) >ipo
s. Together with the assumption s >, t, this last inequality implies
f(81,---,8i=1,8,8i+1,---,5n) >ipo t by transitivity. Finally, s; = s1,...,
8i—1 = 8;—1 and s >, t are obvious.

(6) In order to show irreflexivity of >,,, we assume that there exists a
term s such that s >, s, and try to refute this assumption by induction on
the size of s. If s = z is a variable, then the only possible case is (LPO1).
However, the condition “s # s” necessary for this case to apply is obviously
not satisfied.

Thus, assume that s = f(s1,...,8,). Obviously, (LPO1) and (LPO2b)
cannot apply. For (LPO2c), there must exist an 4,1 > ¢ > n, such that
Si >ipo Si- By induction, we know that this is not possible. For (LPO2a),
we have on the one hand an index ¢,1 < ¢ < n, such that s; >, s. On
the other hand, the subterm property yields s >, s;. Transitivity implies
8i >1po Si, which contradicts our induction hypothesis. O

5.4 Simplification orders 121

One advantage of lexicographic path orders over polynomial orders is that
they do not impose a doubly-exponential bound on the length of reduction
sequences. In fact, they can even be used to show termination of term
rewriting systems with reduction sequences whose length cannot be bounded
by a primitive recursive function:

Example 5.4.15 Termination of the term rewriting system R 4. introduced
in Example 5.3.11 can be shown using the lexicographic path order that is
induced by a > s.

A further nice feature of lexicographic path orders is the fact that it is
decidable whether termination of a given finite term rewriting system can
be shown with the help of such an order.

Proposition 5.4.16 Let ¥ be a finite signature, s,t € T(X,V), and R a
finite term rewriting system over T(X,V).

1. For a given lexicographic path order, s >y, t can be decided in time
polynomial in the size of s, t.

2. The question of whether termination of R can be shown using some lex-
icographic path order on T'(X,V) is an NP-complete problem.

The first statement of the proposition is an easy consequence of the defi-
nition of lexicographic path orders (Exercise 5.25). An NP-algorithm for
the problem addressed in the second statement of the proposition simply
guesses an order > on X, and then uses the polynomial algorithm of the
first statement to check whether this guess was correct. NP-hardness of the
problem for the multiset path order is shown in [149]. This proof can easily
be adapted to the lexicographic path order.

The applicability of this approach for showing termination can be in-
creased by allowing for different ways of comparing the collections of sub-
terms in case (LPO2c) of Definition 5.4.12. Instead of comparing the tuples
(81,---,8m) and (t1,...,tn) lexicographically from left to right, one can also
define an order where they are always compared lexicographically from right
to left. More generally, one can associate each function symbol with a fixed
permutation of its arguments, and then compare the tuples of immediate
subterms lexicographically along this permutation. To obtain the multiset
path order >,,,, induced by a strict order > on X, one considers the mul-
tisets {s1,...,8m} and {¢1,...,tn}, and compares them with the multiset
order induced by >,,,,. The fact that this yields a well-defined simplifica-
tion order can be shown by a proof that is similar to the one for >, [72].
In the recursive path order with status, these different approaches are
combined: each function symbol is equipped with a status that determines

122 5 Termination

whether the collections of subterms are compared by the multiset order,
or lexicographically with respect to a permutation associated with the func-
tion symbol. The following is an example of a rewrite system where only the
combination of the multiset and the lexicographic status yields a recursive
path order that can show its termination:

Example 5.4.17 Let s be a unary and +, * be binary function symbols.
We consider the term rewriting system R that consists of the rules

z+y)+z — z+(y+2),
z*xs(y) — xz+ (y*z).

The first rule can only be oriented in this direction with a recursive path
order that assigns lexicographic status (from left to right) to +. In order to
orient the second rule from left to right, we need * > +. In addition, z*s(y)
must be larger than y x x, which can only be achieved by assigning multiset
status to *. Note that the additional rule

z+s(y) — s(y+x)

would require + > s and multiset status for 4+, which implies that all three
rules together cannot be shown to be terminating with a recursive path order
with status.

5.4.3 Recursive path orders in ML

Building on the type of terms (see Section 4.7) and the lexicographic order
lez already defined, the definition of >y, is easily turned into ML code:

(* (string * string -> order) -> term * term -> order *)
fun Ilpo ord (s,t) = case (s,t) of
(s, V) => if s =t then EQ
else if occurs z s then GR (*LPO1x) else NGE
| ¢(V_, T_) => NGE
| (T'(f,ss), T(g,ts)) => (*LPO2x%)
if forall (fn si => lpo ord (si,t) = NGE) ss
then case ord(f,g) of
GR => if forall (fn ti => lpo ord (s,ti) = GR) s
then GR (*LPO2b*) else NGE
| EQ => if forall (fn ¢ => Ipo ord (s,td) = GR) ts
then lex (lpo ord) (ss,ts) (*LPO2cx*)
else NGE
| NGE => NGE
else GR (*LPO2ax);

If ord implements the order > on the function symbols, then Ipo ord imple-
ments >y,.

5.4 Simplification orders 123

Although we have already indicated the places in the code which corre-

spond to particular clauses in the definition of the lexicographic path order,
the following comments should answer any remaining questions.

The branches returning NGE are the result of analysing in which cases
neither s >y, t nor s = t holds. For example, if s is a variable and
t is not, then s >y, t cannot hold because (LPO1) requires ¢ to be a
variable and (LPO2) requires s not to be a variable. This justifies the line
(V ., T) => NGE.

Case (LPO2a) is slightly disguised because we have replaced the test 31 <
i <m. 8; 2ipo t by V1 < i <m. 8 Zipo t

Case (LPO2c) is simplified by appealing to the functional lez for com-
paring the subterms lexicographically. Note that the definition of >,
avoids the use of (>po)ier because (>ipo)ieq is only well-defined if >y, is
a strict order, something we do not yet know while defining >,,.

The precise implementation of the parameter ord is not germane to the

subject of this book. Suffice it to say that the most straightforward repre-
sentation is a list of pairs (f,g) meaning f > g. There should also be a
function to compute the transitive closure of such a list, which obviates the
need to supply (f,h) in addition to (f,g) and (g,h).

The recursive path order with status is a generalization of the lexicogra-

phic and multiset path orders. At the implementation level it means that
rpo is an abstraction of lpo w.r.t. the functional lex:

(* rpo: (string -> (term * term -> order) -> term list x term list -> order)
-> (string * string -> order) -> term * term -> order *)
fun rpo stat ord (s,t) = case (s,t) of
(s, V) => if s = t then EQ
else if occurs ¢ s then GR else NGE
| (V_, T_.)=>NGE
| (T(f,s9), T(g,ts)) =>
if forall (fn si => rpo stat ord (si,t) = NGE) ss
then case ord(f,g) of

GR => if forall (fn ti => rpo stat ord (s,ti) = GR) ts
then GR else NGE
| EQ => if forall (fn ti => rpo stat ord (s,ti) = GR) s

then (stat f) (rpo stat ord) (ss,ts)
else NGE
| NGE => NGE
else GR;

The additional parameter stat maps each function symbol to the appropriate
subterm order, e.g. as in (fn "f" => lex | "g" => mul, ...).

Note that rpo is one of the rare examples of a natural third-order func-

tion: one of its parameters is a function which itself takes a function as an
argument.

