
Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Generalized rewrite theories, coherence completion, and

symbolic methods

José Meseguer

Department of Computer Science, University of Illinois at Urbana-Champaign, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2018
Received in revised form 16 August 2019
Accepted 18 August 2019
Available online 21 August 2019

Keywords:
Generalized rewrite theories
Coherence
Pattern predicates
Constrained narrowing
Symbolic invariant verification

A new notion of generalized rewrite theory suitable for symbolic reasoning and generalizing
the standard notion in [19] is motivated and defined. Also, new requirements for symbolic
executability of generalized rewrite theories that extend those in [33] for standard rewrite
theories, including a generalized notion of coherence, are given. Symbolic executability,
including coherence, is both ensured and made available for a wide class of such
theories by automatable theory transformations. Using these foundations, several symbolic
reasoning methods using generalized rewrite theories are studied, including: (i) symbolic
description of sets of terms by pattern predicates; (ii) reasoning about universal reachability
properties by generalized rewriting; (iii) reasoning about existential reachability properties
by constrained narrowing; and (iv) symbolic verification of safety properties such as
invariants and stability properties.

© 2019 Published by Elsevier Inc.

1. Introduction

Symbolic methods are used to reason about concurrent systems specified by rewrite theories in many ways, including: (i)
cryptographic protocol verification, e.g., [35], (ii) logical LTL model checking, e.g., [38,9,10], (iii) rewriting modulo SMT and
related approaches, e.g., [87,7], (iv) inductive theorem proving and program verification, e.g., [43,61], and (v) reachability
logic theorem proving, e.g., [92,64,91]. One key issue is that the rewrite theories used in several of these approaches go
beyond the standard notion of rewrite theory in, say [19], and also beyond the executability requirements in, say, [33]. For
example: (1) conditions in rules are not just conjunctions of equations, but quantifier-free (QF) formulas in an, often decid-
able, background theory T (e.g., Presburger arithmetic); and (2) the rewrite rules may model open systems interacting with an
environment, so that they may have extra variables in their righthand sides [87]. Furthermore, each of the approaches just
mentioned makes different assumptions about the rewrite theories they handle: no general notion has yet been proposed.

There are also unsolved issues about symbolic executability: even though symbolic execution methods in some ways relax
executability requirements (e.g., in narrowing, extra variables in righthand sides of rules are unproblematic), in other ways
symbolic execution imposes strong restrictions on the rewrite rules to be executed. For example, unless both the lefthand
and righthand sides of a rewrite rule are terms in an equational theory having a finitary unification algorithm, symbolic
reachability analysis becomes extremely difficult and is usually outside the scope of current methods. There is also plenty
of terra incognita. For example, we all assume and require that the rewrite theories we are going to symbolically execute are
coherent [98,33]. But no theory of coherence, or methods for guaranteeing it, have yet been developed for these new kinds
of theories.

E-mail address: meseguer@uiuc.edu.
https://doi.org/10.1016/j.jlamp.2019.100483
2352-2208/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jlamp.2019.100483
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:meseguer@uiuc.edu
https://doi.org/10.1016/j.jlamp.2019.100483
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2019.100483&domain=pdf

2 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
The upshot of all this is that, as usual, the new wine of symbolic reasoning requires new wineskins. This work is all about
such new wineskins. It begins by asking, and providing answers for, two main questions: (1) How can the notion of rewrite
theory be generalized to support symbolic reasoning? and (2) What are the appropriate symbolic executability requirements
needed for such rewrite theories; and how can they be ensured for, and made available to, an as wide as possible class of
theories?

Questions (1) and (2) are answered as follows. Question (1) is answered in Section 3, which motivates and presents a
notion of generalized rewrite theory suitable for symbolic reasoning and subsuming the standard notion as a special case. It
also defines an initial model semantics for such theories in an associated category of algebraic transition systems. Question
(2) is then answered by using such a semantics to identify symbolic executability requirements, including a generalized notion
of coherence and an easier to check characterization of it. Section 4 then addresses, and provides solutions for, two related
problems: (i) how can (ground) coherence be ensured automatically under reasonable requirements? and (ii) how can the
class of generalized rewrite theories that can be symbolically executed be made as wide as possible by means of adequate
theory transformations? The answer to question (i) is new even for standard rewrite theories and can be quite useful to
semi-automate equational abstractions [75]. The answer to question (ii) is very general: under mild conditions symbolic
executability can be ensured for a very wide class of generalized rewrite theories by two theory transformations.

Once answers to the above foundational questions (1)–(2) have been given, one can ask, and provide answers to, the
following high-level question: (3) What suitable symbolic methods can be developed to reason about generalized rewrite
theories, including properties satisfied by the initial models of such theories? Since different methods are possible, the
following answers are given:

1. Since the symbolic reasoning involved is about the behavior of the concurrent system specified by a generalized rewrite
theory R, the first order of business is to find a language of state predicates amenable to symbolic reasoning with
the rewrite theory R. The language proposed in Section 5 for this purpose further develops the language of pattern
predicates proposed in [91], whose atomic formulas are constrained terms u | ϕ , where u is a constructor term1 and ϕ
is a quantifier-free (QF) formula, so that u | ϕ describes the ground instances of u that satisfy the constraint ϕ .

2. Rules in a generalized rewrite theory R are conditional rules of the form l → r if ϕ , where ϕ is a QF formula. In Sec-
tion 6.1 rewriting with such rules is shown to be sound and complete to answer universal reachability questions of the
form R |= (∀Y) t →∗ t′ , with Y the variables in t, t′ . Due to the presence of extra variables in r and/or ϕ , execution of
such rewrite rules may be hard to mechanize; therefore, sufficient conditions making this kind of generalized rewriting
decidable are also given.

3. For symbolic model checking applications the crucial question is how to solve existential reachability problems of the
form R |= ∃(A →∗ B), where A and B are pattern predicates in the sense explained above and ∃ abbreviates the
existential closure of the reachability formula. That is, we want to know if there is a concrete state satisfying predicate
A from which a concrete state satisfying B can be reached. For example, R may specify a cryptographic protocol, A
may specify its initial states, and B may specify a class of attack states. In Section 6.2 I first show that for the wide
class of rewrite theories characterized in Section 4.3, rewriting with R defines a predicate transformer R! on the power
set of the set of states, which can be effectively computed when such sets of states are definable by pattern predicates. I
then show that such effective description of R! in fact coincides with the notion of constrained narrowing also defined in
Section 4.3, which therefore provides a sound and complete symbolic method for existential reachability analysis.

4. Since the most common symbolic model checking problems involve the verification of invariants, in Section 6.3 I explain
in detail how invariants and their complements (which I call coinvariants), including the case of inductive invariants and
coinvariants, can be analyzed and sometimes fully verified by the just-described constrained narrowing method.

One might wonder why a discussion of rewriting modulo SMT [86,87] has not been included in the above list of symbolic
methods. The reasons are twofold. Firstly, the journal paper [87] already provides a detailed explanation of rewriting modulo
SMT. Secondly, as I briefly explain in Section 7, rewriting modulo SMT can be naturally understood as a special, restricted case
of the more general constrained narrowing method, which implicitly subsumes it. This does not decrease the usefulness of
rewriting modulo SMT, since its implementation can be substantially more efficient than that of constrained narrowing.

Outline. Section 2 gathers preliminaries. Section 3 defines generalized rewrite theories, their categories of models, including
initial ones, and studies in detail the coherence problem for such theories. Section 4 then defines several theory transfor-
mations that can automatically ensure coherence. The language of pattern predicates and its computability properties are
presented in Section 5. The last three symbolic methods described above are then presented in Section 6. Related work and
conclusions are discussed in Section 7. Proofs are relegated to Appendix A.

Comparison with the Conference Paper [72]. This paper substantially extends the conference paper [72] in the following
ways:

1 A constructor term u does not include equationally defined functions like ∗ for number multiplication, or append for lists, but only “data constructor”
operators such as 0 and s for natural numbers in Peano notation, or nil and cons for lists. Constructors are explained in detail in Section 2.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 3
1. Sections 5–6 on pattern predicates and on symbolic methods are entirely new and contain many new concepts and
results.

2. Sections 1, 3 and 7 and the list of References have been substantially expanded.
3. Many fully developed examples are presented.
4. Proofs of all, previous and new, results are included.

2. Preliminaries on order-sorted algebra and variants

I present needed preliminaries on order-sorted algebra, logic, and variants. The material is adapted from [70,73]. The
presentation is self-contained: only the notions of many-sorted signature and many-sorted algebra, e.g., [34], are assumed.

Definition 1. An order-sorted (OS) signature is a triple � = (S, ≤, �) with (S, ≤) a poset and (S, �) a many-sorted signature.
Ŝ = S/ ≡≤ , the quotient of S under the equivalence relation ≡≤ = (≤ ∪ ≥)+ , is called the set of connected components,
or kinds of (S, ≤). The order ≤ and equivalence ≡≤ are extended to sequences of same length in the usual way, e.g.,
s′1 . . . s′n ≤ s1 . . . sn iff s′i ≤ si , 1 ≤ i ≤ n. � is called sensible if for any two f : w → s, f : w ′ → s′ ∈�, with w and w ′ of same
length, we have w ≡≤ w ′ ⇒ s ≡≤ s′ . A many-sorted signature � is the special case where the poset (S, ≤) is discrete, i.e.,
s ≤ s′ iff s = s′ .

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f [s1]...[sn][s] = { f : s′1 . . . s′n → s′ ∈� | s′i ∈ [si], 1≤ i ≤ n, s′ ∈ [s]}
denotes the family of “subsort polymorphic” operators f . We can extend any � = (S, ≤, �) to its kind completion �̂ =
(S
 Ŝ, ̂≤, ̂�) where: (i) ≤̂ is the least partial order extending ≤ such that s < [s] for each s ∈ S , and (ii) we add to each
family of subsort polymorphic operators f [s1]...[sn][s] in � the operator f : [s1] . . . [sn] →[s]. �
Definition 2. For � = (S, ≤, �) an OS signature, an order-sorted �-algebra A is a many-sorted (S, �)-algebra A such that:

– whenever s ≤ s′ , then we have As ⊆ As′ , and
– whenever f : w → s, f : w ′ → s′ ∈ f [s1]...[sn][s] and a ∈ Aw ∩ Aw ′ , then we have f w,s

A (a) = f w ′,s′
A (a), where As1...sn = As1 ×

. . .× Asn .

A �-homomorphism h : A → B is a many-sorted (S, �)-homomorphism such that ([s] = [s′] ∧ a ∈ As ∩ As′) ⇒ hs(a) =
hs′ (a). This defines a category OSAlg� . Notation: h : A ∼= B denotes an isomorphism h : A → B . �
Theorem 1. [70] The category OSAlg� has an initial algebra. Furthermore, if � is sensible, then the term algebra T� with:

– if a : ε→ s then a ∈ T�,s (ε denotes the empty string),
– if t ∈ T�,s and s ≤ s′ then t ∈ T�,s′ ,
– if f : s1 . . . sn → s and ti ∈ T�,si 1 ≤ i ≤ n, then f (t1, . . . , tn) ∈ T�,s ,

is initial, i.e., there is a unique �-homomorphism to each �-algebra.

For [s] ∈ Ŝ , T�,[s] denotes the set T�,[s] =⋃
s′∈[s] T�,s′ . T� will (ambiguously) denote: (i) the term algebra; (ii) its un-

derlying S-sorted set; and (iii) the set T� =⋃
s∈S T�,s . An OS signature � is said to have non-empty sorts iff for each s ∈ S ,

T�,s �= ∅. An OS signature � is called preregular [51] iff for each t ∈ T� the set {s ∈ S | t ∈ T�,s} has a least element, denoted
ls(t). We will assume throughout that � has non-empty sorts and is preregular.

An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅, and the variables in X are always assumed
disjoint from all constants in �. The �-term algebra on variables X , T�(X), is the initial algebra for the signature �(X)

obtained by adding to � the variables X as extra constants. Since a �(X)-algebra is just a pair (A, α), with A a �-algebra,
and α an interpretation of the constants in X , i.e., an S-sorted function α ∈ [X→A], the �(X)-initiality of T�(X) can be
expressed as the following theorem:

Theorem 2. (Freeness Theorem). If � is sensible, for each A ∈ OSAlg� and α ∈ [X→A], there exists a unique �-homomorphism,
_α : T�(X) → A extending α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

In particular, when A = T�(Y), an interpretation of the constants in X , i.e., an S-sorted function σ ∈ [X→T�(Y)] is called
a substitution, and its unique homomorphic extension _σ : T�(X) → T�(Y) is also called a substitution. Define dom(σ) =
{x ∈ X | x �= xσ }, and ran(σ) =⋃

x∈dom(σ) vars(xσ). Given variables Z , the substitution σ |Z agrees with σ on Z and is the
identity elsewhere.

The first-order language of equational �-formulas is defined in the usual way: its atoms are �-equations t = t′ , where
t, t′ ∈ T�(X)[s] for some [s] ∈ Ŝ and each Xs is assumed countably infinite. The set Form(�) of equational �-formulas is

4 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
then inductively built from atoms by: conjunction (∧), disjunction (∨), negation (¬), and universal (∀x :s) and existential
(∃x :s) quantification with sorted variables x :s ∈ Xs for some s ∈ S . ϕ ∈ Form(�) is called quantifier-free (QF) iff it does not
contain any quantifiers. QFForm(�) denotes the set of QF formulas. The literal ¬(t = t′) is denoted t �= t′ . Given a �-algebra
A, a formula ϕ ∈ Form(�), and an assignment α ∈ [Y→A], with Y = fvars(ϕ) the free variables of ϕ , the satisfaction relation
A, α |= ϕ is defined inductively in the usual way. By definition, A |= ϕ holds iff for each α ∈ [Y→A] A, α |= ϕ holds, where
Y = fvars(ϕ) are the free variables of ϕ . We say that ϕ is valid (or true) in A iff A |= ϕ . For a subsignature � ⊆ � and
A ∈ OSAlg� , the reduct A|� ∈ OSAlg� agrees with A in the interpretation of all sorts and operations in � and discards
everything in � \ �. If ϕ ∈ Form(�) we have the equivalence A |= ϕ ⇔ A|� |= ϕ . Given a set of formulas � ⊆ Form(�)

we say that A ∈ OSAlg� satisfies �, written A |= � iff ∀ϕ ∈ � A |= ϕ . An OS theory T is a pair T = (�, �) with � an OS
signature and � ⊆ Form(�). For T = (�, �), OSAlg(�,�) denotes the full subcategory of OSAlg� with objects those A ∈
OSAlg� such that A |= �, called the (�, �)-algebras. Given T = (�, �) we call ϕ ∈ Form(�) a logical consequence of T , or true
in T , denoted T |= ϕ or � |= ϕ , iff ∀A ∈ OSAlg(�,�) A |= ϕ . Note that the notion of satisfaction and the Freeness theorem
yield the implication T |= ϕ ⇒ T |= ϕθ for any substitution θ . Note also that any �-algebra A has an associated theory
th(A) = (�, {ϕ ∈ Form(�) | A |= ϕ}). A theory inclusion T = (�, �) ⊆ (�′, �′) = T ′ holds iff � ⊆�′ and �′ |= �, and is called
a conservative extension iff ∀ϕ ∈ Form(�) T |= ϕ ⇔ T ′ |= ϕ . Call T = (�, �) and T ′ = (�, �′) semantically equivalent (denoted
T ≡ T ′) iff T ⊆ T ′ and T ′ ⊆ T . Given a theory T ′ = (�′, �′) and a subsignature � ⊆�′ , the theory T ′|� is, by definition, the
pair (�, {ϕ ∈ Form(�) | �′ |= ϕ}). The following two facts follow easily from this definition: (i) T ′ is a conservative extension
of T ′|� , and (ii) if T ′ is a conservative extension of T = (�, �), then T ≡ T ′|� .

An OS equational theory (resp. conditional equational theory) is an OS theory T = (�, E) with E a set of �-equations
(resp. conditional �-equations of the form

∧
i=1...n ui = vi ⇒ t = t′). OSAlg(�,E) always has an initial algebra T�/E , and free

algebras T�/E (X) [70]. The inference system in [70] is sound and complete for OS equational deduction, i.e., for any OS
equational theory (�, E), and �-equation u = v we have an equivalence E � u = v ⇔ E |= u = v . Deducibility E � u = v is
abbreviated as u =E v , called E-equality.

Given an OS equational theory (�, E), an E-unifier of a system of �-equations, i.e., a conjunction φ = u1 = v1 ∧ . . . ∧
un = vn of �-equations is a substitution σ such that uiσ =E viσ , 1 ≤ i ≤ n. An E-unification algorithm for (�, E) is an
algorithm generating a complete set of E-unifiers Unif E (φ) for any system of � equations φ, where “complete” means that
for any E-unifier σ of φ there is a τ ∈ Unif E (φ) and a substitution ρ such that σ =E (τρ)|dom(σ)∪dom(τ) , where =E here
means that for any variable x we have xσ =E x(τρ)|dom(σ)∪dom(τ) . The algorithm is finitary if it always terminates with a
finite set Unif E (φ) for any φ. Likewise, given a sort k that is the top of one of the connected components of the poset of
sorts (S, ≤) of the signature �, and given a finite set of terms {t1, . . . , tn} ⊆ T�(X)k with n ≥ 2, a E-unifier of {t1, . . . , tn} is
a substitution σ such that for each 1 ≤ i < j ≤ n, tiσ =E t jσ . The notion of a complete set of E-unifiers Unif E ({t1, . . . , tn})
for such a set of terms {t1, . . . , tn} is entirely analogous to that for a system of equations. The same E-unification algorithm
can solve both systems of equations and sets of terms of the same kind.

Given a set of equations B used for deduction modulo B , a preregular OS signature � is called B-preregular2 iff for each
u = v ∈ B and substitution ρ , ls(uρ) = ls(vρ).

Recall the notation for term positions, subterms, and term replacement from [31]: (i) positions in a term viewed as a
tree are marked by strings p ∈N∗ specifying a path from the root, (ii) t|p denotes the subterm of term t at position p, and
(iii) t[u]p denotes the result of replacing subterm t|p at position p by u. Recall also from [73,65] that given an equational
theory (�, E
 B) with � is B-preregular, =B decidable, and such that:

1. each equation u = v ∈ B is regular, i.e., vars(u) = vars(v), and linear, i.e., there are no repeated variables in u, and no
repeated variables in v;

2. the equations E , when oriented as rewrite rules �E = {t → t′ | (t = t′) ∈ E}, have vars(t′) ⊆ vars(t), and are convergent
modulo B , that is, sort-decreasing, strictly B-coherent, confluent, and terminating as rewrite rules modulo B [65],

then we call the rewrite theory R = (�, B, �E) (in the sense of [19]) a decomposition of the given equational theory (�, E
B).
Given such a decomposition R = (�, B, �E), the equality relation =E
B becomes then decidable thanks to the rewrite relation
→�E,B , where u →�E,B v holds3 between two �-terms u and v iff there is a position p, a rule (t → t′) ∈ �E and a substitution
θ such that u|p =B tθ and v = u[t′θ]p . Such decidability follows from the following theorem:

Theorem 3. (Church-Rosser Theorem) [55] Let R = (�, B, �E) be a decomposition of (�, E
 B). Then we have an equivalence:

E
 B � u = v ⇔ u!�E,B =B v!�E,B ,

2 If B = B0
 U , with B0 associativity and/or commutativity axioms, and U identity axioms, the B-preregularity notion can be broadened by requiring
only that: (i) � is B0-preregular in the standard sense, so that ls(uρ) = ls(vρ) for all u = v ∈ B0 and substitutions ρ; and (ii) the axioms U oriented as
rules �U are sort-decreasing in the sense that u = v ∈ U ⇒ ls(uρ) ≥ ls(vρ) for each ρ . Maude automatically checks B-preregularity of an OS signature � in
this broader sense [24].

3 See [90] for the more general definition of both convergence and the relation →�E,B when � is B-preregular in the broader sense of Footnote 2.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 5
where t!�E,B denotes the canonical form of term t by rewriting with →�E,B , which exists and is unique up to B-equality
thanks to the convergence of →�E,B .

If R = (�, B, �E) is a decomposition of (�, E
 B) and X an S-sorted set of variables, the canonical term algebra C�/�E,B(X)

has C�/�E,B(X)s = {[t!�E,B]B | t ∈ T�(X)s}, and interprets each f : s1 . . . sn → s as the function fC
�/�E,B (X) : ([u1]B , . . . , [un]B) �→

[f (u1, . . . , un)!�E,B]B . By the Church-Rosser Theorem we then have an isomorphism h : T�/E(X) ∼= C
�/�E,B(X), where h :

[t]E �→ [t!�E,B]B . In particular, when X is the empty family of variables, the canonical term algebra C
�/�E,B is an initial

algebra, and is the most intuitive model for T�/E
B as an algebra of values computed by �E, B-simplification.
Quite often, the signature � on which T�/E
B is defined has a natural decomposition as a disjoint union � = �

,

where the elements of C�/�E,B are �-terms, whereas the function symbols f ∈
 are viewed as defined functions which are
evaluated away by �E, B-simplification. � (with same poset of sorts as �) is then called a constructor subsignature of �. Call
a decomposition R = (�, B, �E) of (�, E
 B) sufficiently complete with respect to the constructor subsignature � iff for each
t ∈ T� we have t!�E,B ∈ T� . Sufficient completeness is closely related to protecting inclusions of decompositions.

Definition 3. (Protecting, Constructor Decomposition). A decomposition R = (�, B, �E) protects decomposition R0 =
(�0, B0, �E0) iff �0 ⊆ �, B0 ⊆ B , and �E0 ⊆ �E , and for all t, t′ ∈ T�0 (X) we have: (i) t =B0 t′ ⇔ t =B t′ , (ii) t = t!�E0,B0

⇔
t = t!�E,B , and (iii) C�0/�E0,B0

∼= C�/�E,B |�0 .

R� = (�, B�, �E�) is a constructor decomposition of R = (�, B, �E) iff R protects R� and � and � have the same poset
of sorts, so that R is sufficiently complete with respect to �. Finally, � is called a subsignature of free constructors modulo
B� iff �E� = ∅, so that C

�/�E�,B�
= T�/B�

.

Example 1. The following Maude specification of lists of natural numbers illustrates the notions of: (i) a decomposition
protection another, and (ii) a constructor decomposition.

fmod NAT-LIST is protecting BOOL-OPS .
sorts Nat NatList . subsorts Nat < NatList .
ops 0 1 : -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _~_ : Nat Nat -> Bool [comm] . *** equality predicate
op nil : -> NatList [ctor] .
op _;_ : NatList NatList -> NatList [ctor assoc] .

vars N M : Nat . vars L Q : NatList .

eq N ~ N = true [variant] .
eq N ~ N + M + 1 = false [variant] .
eq L ; nil = L [variant] .
eq nil ; L = L [variant] .
eq L ; nil ; Q = L ; Q [variant] . *** B-coherence extension
endfm

The Maude notation for functional modules (introduced with keywords fmod . . . endfm) is just a typewriter version
of an order-sorted equational specification. An equational theory is always named (in this case it is called NAT-LIST). It
may import other theories as subtheories (in this case the subtheory BOOL-OPS of Boolean operations in Maude’s stan-
dard prelude). The keywords are self-explanatory: sorts are declared with the sorts keyword; the sort order ≤ is the
transitive-reflexive closure of the binary relation declared by the subsorts keyword. Variables to be used in equations
can be declared with their appropriate sorts using the vars keyword. Equations are declared with the eq keyword. The
function symbols defining the module’s signature � are declared with the op keyword. Each such declaration is started
by its keyword and finished with a blank space and a period. All Maude functional modules are in fact decompositions of
equational theories in the following sense: the theory (�, E ∪ B) has the decomposition (�, B, �E), where B are associativity
and/or commutativity and/or identity element axioms that are respectively declared with the assoc, comm, and id: key-
words for their corresponding operators. Instead, the equations E are declared with the eq keyword. Specifically: (i) natural
number addition _+_ is associative and commutative and has 0 as its identity element; the equality predicate on natural
numbers _~_ is commutative; and list concatenation _;_ is associative. The protecting BOOL-OPS declaration states
that the decomposition NAT-LIST protects that of BOOL-OPS in the sense of Definition 3. This is intuitively obvious for
two reasons: (1) no new equations for the Boolean operations in BOOL-OPS are added in NAT-LIST (no confusion is
caused between terms in the submodule), and (2) because of commutativity, the two equations for the equality predicate
~ fully define it for all pairs of natural numbers (no “junk” is added to the Bool sort by this new predicate), so that
NAT-LIST adds no junk and no confusion to BOOL-OPS, which is the key idea about protecting inclusions.

Thanks to the ctor operator attribute, the subsignature � ⊆� of constructors for NAT-LIST can be read off from the
module’s text. Therefore, � consists of: (i) the constructors for BOOL-OPS, namely, true and false, (ii) the 0 and 1

6 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
numbers, (iii) the _+_ operator; (iv) the nil empty list, and (v) the list concatenation operator _;_. The axioms B� are
those of B minus the commutativity of the equationally defined equality predicate symbol _~_. Finally, the equations E�

are the last three equations in the module (the last one is added as a so-called strict B-coherence extension of the previous
two, in the sense explained later in Section 3.1). Then, the decomposition inclusion (�, B�, �E�) ⊆ (�, B, �E) is a protecting
inclusion and a constructor decomposition of NAT-LIST in the sense of Definition 3. Symbols in � \ � are called defined
function symbols. In NAT-LIST, besides the Boolean operations in BOOL-OPS, _~_ is the only such symbol.

The only still unclear issue is the meaning of the variant attribute for all the equations in NAT-LIST. This is just
declared to allow Maude to compute variants of terms in NAT-LIST, in the sense explained right below.

The notion of variant answers, in a sense, two questions: (i) how can we best describe symbolically the elements of
C�/�E,B(X) that are reduced substitution instances of a pattern term t? and (ii) given an original pattern t , how many other
patterns do we need to “cover” all reduced instances of t in CR(X)?

Definition 4. Given a decomposition R = (�, B, �E) and a �-term t , a variant [28,39] of t is a pair (u, θ) such that: (i)
u =B (tθ)!�E,B , (ii) dom(θ) = vars(t), and (iii) θ = θ !�E,B , that is, xθ = (xθ)!�E,B for all variables x. (u, θ) is called a ground
variant iff, furthermore, u ∈ T� . Note that if (u, θ) is a ground variant of some t , then [u]B ∈ C�/�E,B . Given variants (u, θ)

and (v, γ) of t , (u, θ) is called more general than (v, γ), denoted (u, θ) �B (v, γ), iff there is a substitution ρ such that:
(i) (θρ)|vars(t) =B γ , and (ii) uρ =B v . Let �t ��E,B = {(ui, θi) | i ∈ I} denote a complete set of variants of t , that is, a set of
variants such that for any variant (v, γ) of t there is an i ∈ I , such that (ui, θi) �B (v, γ). A decomposition R = (�, B, �E) of
(�, E
 B) has the finite variant property [28] (FVP) iff for each �-term t there is a finite complete set of variants �t ��E,B ={(u1, θ1), . . . , (un, θn)}.

If B has a finitary unification algorithm and R = (�, B, �E) is FVP, then for any term t the finite set �t ��E,B of its variants
can be computed by folding variant narrowing4 [39].

Example 2. Disregarding the Boolean operations in BOOL-OPS, the decomposition of NAT-LIST is FVP (but see below).
Since the Boolean operations in BOOL-OPS are never used in the communication channel modules FT-CHANNEL and
FT-CHANNEL-ABS of Example 5 that import NAT-LIST and, furthermore, both the decomposition of NAT-LIST and
that of the equational part of FT-CHANNEL-ABS extending it are FVP, the computation of the variants �l��E,B for l each
lefthand side of a rule in FT-CHANNEL-ABS will allow us in Example 5 to compute the so-called coherence completion
of FT-CHANNEL-ABS. This, in turn, will make it possible to automatically verify LTL properties of FT-CHANNEL-ABS by
explicit-state model checking. For concrete examples of finite sets of variants of the form �l��E,B for l a rule’s lefthand side,
please see Example 5.

A perceptive reader might have a lingering doubt: list concatenation _;_ is associative. But associative unification is
in general infinitary. So, how is �l��E,B going to yield a finite number of variants? The answer is that: (i) many practical
associative unification problems do have a finite, complete set of solutions, and (ii) all the unification problems involved
in computing the variant sets �l��E,B for lefthand sides of FT-CHANNEL-ABS rules fall within this finitary set of solutions
case. Therefore, a more careful statement is that NAT-LIST “is” FVP for all terms t such that all the associative unification
problems arising when computing �t ��E,B have finite, complete sets of unifiers. We could say that NAT-LIST is FVP in
practice for many commonly occurring variant computation problems.

If a decomposition R = (�, B, �E) is FVP and protects a constructor decomposition R� = (�, B�, �E�), the notion of
constructor variant answers the following related question: given a pattern t what are the reduced instances of t which
“cover” all reduced ground instances of t?

Definition 5. (Constructor Variant). [73] Let R = (�, B, �E) be a decomposition of (�, E
 B), and let R� = (�, B�, �E�) be
a constructor decomposition of R. Then an �E, B-variant (u, θ) of a �-term t is called a constructor �E, B-variant of t iff
u ∈ T�(X). Let �t ��

�E,B
denote a complete set of constructor variants of a term t , i.e., for each constructor variant (v, β) of t

there is a (w, α) ∈ �t ��
�E,B

such that (w, α) �B (v, β).

Under mild conditions on a constructor decomposition R� = (�, B�, �E�) protected by an FVP R = (�, B, �E), if B has
a finitary unification algorithm the set �t ��

�E,B
is finite and can be effectively computed according to the algorithm in [90],

which has been implemented in Maude. Constructor variant sets of the form �〈l, r〉��
�E,B

, where l and r are, respectively,
the lefthand and righthand sides of a rewrite rule in a rewrite theory R play a crucial role in the theory transformation

4 Maude 2.7.1 supports the computation of �t��E,B by folding variant narrowing for B a combination of associative and/or commutative and/or identity
axioms.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 7
R �→R�

�1,l,r of Section 4.3. Please, see the BANK-ACCOUNT example in Section 4.3 for examples of constructor variant sets
of the form �〈l, r〉��

�E,B
.

3. Generalized rewrite theories and coherence

There are two main reasons for further generalizing the notion of rewrite theory in [19], and for relaxing its executability
conditions as specified in, e.g., [33]. The first is that it has proved very useful to model open systems that interact with a
typically non-deterministic external environment by rewrite rules that have extra variables in their righthand sides, so that
a term t may be rewritten to a possibly infinite number of righthand side instances by different instantiations of such extra
variables. The second reason is that for symbolic reasoning it is very useful to allow conditional rewrite rules l → r if ϕ
where ϕ is not just a conjunction of equalities but a QF equational formula, which is viewed as a constraint imposed
by the rule and interpreted in a suitable background theory T . The key point is that the notion of generalized rewrite
theory thus obtained, although not always executable in the standard sense, can still be executed symbolically under fairly
reasonable assumptions. For example, the notion of rewriting modulo SMT [87] (see also the related work [7]) shows how
such generalized theories can be symbolically executed under some typing restrictions and the requirement that satisfiability
of a rule’s condition ϕ is always decidable. Related, yet different, notions of symbolic execution (discussed in Section 7) are
also given in [43,61].

The purpose of this section is fourfold: (1) to give a general definition of such generalized rewrite theories with no
executability or decidability assumptions at all; (2) to define a category of transition system models for generalized rewrite
theories; (3) to first add executability assumptions to the equations in such theories; and (4) to then extend the notion of
coherence [98,33] to generalized rewrite theories. This will have two important consequences: (i) it will provide essential
conditions for symbolic execution of such generalized rewrite theories; and (ii) it will make the notion of ground coherence
completion of a generalized rewrite theory presented in Section 4 as widely applicable as possible.

Definition 6. (Generalized Rewrite Theory). A generalized rewrite theory is a 5-tuple R = (�, G, R, T , φ), where: (i) � is
kind-complete, so that its set of sorts is S
 Ŝ , (see Definition 1); (ii) (�, G) is a (possibly conditional) equational theory;
(iii) R is a set of (possibly conditional) �-rewrite rules, i.e., sequents l → r if ϕ , with l, r ∈ T�(X)[s] for some [s] ∈ Ŝ , and
ϕ a QF �-formula5; (iv) T = (
, �), called the background theory, satisfies: (a) � ⊆
, (b) (�, G) ⊆ T |� ⊆ th(T�/G), (c) for
each ground ϕ ∈ QFForm(�), i.e., such that vars(ϕ) = ∅, T�/G |= ϕ ⇔ T |= ϕ; and (v) φ is a so-called frozenness function,6

mapping each subsort-polymorphic family f [s1]...[sn][s] in � to the subset φ(f [s1]...[sn][s]) ⊆ {1, . . . , n} of its frozen arguments.

Given a generalized rewrite theory R = (�, G, R, T , φ) and terms u, v ∈ T�,[s](X) for some [s] ∈ Ŝ , the rewrite relation
→R holds between them, denoted u →R v , iff there exist a term u′ , a φ-unfrozen7 position p in u′ , a rule l → r if ϕ in R
and a substitution θ such that: (i) T |= ϕθ ; (ii) u =G u′ = u′[lθ]p ; and (iii) u′[rθ]p =G v .

A generalized rewrite theory R = (�, G, R, T , φ) is called topmost iff there is a kind [State] ∈ Ŝ such that: (i) for each l →
r if ϕ in R , l, r ∈ T�(X)[State]; and (ii) for each subsort-polymorphic family f [s1]...[sn][s] in � and i ∈ {1, . . . , n}, if [si] = [State],
then i ∈ φ(f [s1]...[sn][s]). For R topmost u →R v ⇒ u, v ∈ T�,[State] .

Call R = (�, G, R, T , φ) and R′ = (�, G ′, R ′, T ′, φ) semantically equivalent, denoted R ≡ R′ (resp. ground semantically
equivalent, denoted R ≡gr R′) iff: (1) (�, G) ≡ (�, G ′), (2) T ≡ T ′ , and (3) →R=→R′ (resp. (1) T�/G = T�/G ′ , (2) T ≡ T ′ ,
and (3) →R |T 2

�
=→R′ |T 2

�
).

The case of a standard rewrite theory is the special case of theories R = (�, G, R, T , φ) where: (1) condition (iv)-(c) in
Definition 6 applies only to positive (i.e., negation-free) ground QF �-formulas ϕ , (2) T = (�, G), and (3) for each l → r if ϕ
in R , ϕ is a conjunction of equalities8 ϕ =∧

i=1...n ui = vi . In such a special case we omit the background theory and write
R = (�, G, R, φ) as usual. Note also that the QF formulas ϕ in the conditions of rules in R may not be arbitrary �-formulas,
but formulas in a theory T0 = (�0, �0) such that �0 ⊆�. For example, T0 may be the theory of Presburger arithmetic. In
such a case, the background theory T in R = (�, G, R, T , φ) is assumed to be such that T |�0 ≡ T0. The possibility that the
background theory T = (
, �) may have extra operators, so that
 ⊃�, can be nicely illustrated by the case when (�, G)

has a decomposition that protects a constructor decomposition (�, B, ∅), where B is a combination of associativity and/or

5 This is of course a pragmatic decision: satisfiability procedures for QF formulas do not have to pay the typically quite expensive price of quantifier
elimination. All I say in this work about generalized rewrite theories can be easily extended to allow rules whose conditions can be arbitrary first-order
�-formulas.

6 This is supported in Maude by the frozen operator attribute, which forbids rewrites below the specified argument positions. For example, when giving
a rewriting semantics to a CCS-like process calculus, the process concatenation operator _ · _, appearing in process expressions like a · P , will typically be
frozen in its second argument.

7 By definition this means that there is no function symbol f and position q such that: (i) p = q · i · q′ , (ii) u′|q = f (u1, . . . , un), and (iii) i ∈ φ(f [s1]...[sn][s]).
Intuitively this means that the frozenness restrictions φ do not block rewriting at position p in u′ .

8 Admittedly, one can define generalized rewrite theories with even more general rules having additional “rewrite conditions,” i.e., rules of the form
l → r if ϕ ∧∧

i=1...n ui → vi . Then, generalized rewrite theories would specialize to standard rewrite theories whose rules also allow rewrite conditions. I
leave this further generalization as future work.

8 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
commutativity axioms. Then, we can choose T to be the theory obtained by adding to the equality enrichment (�≡, G≡)

[53] of (�, G), for each top sort s� ∈ [s] of each connected component [s] of �, the axioms x = y ⇔ x ≡ y = true and
x �= y ⇔ x ≡ y = false, with x, y of sort s� . T then satisfies conditions (iv)–(a)–(c) in Definition 6.

Example 3. This QLOCK protocol example is borrowed from [91]. It is a dynamic, open system generalization of the original
QLOCK in [44]. It illustrates the new features of generalized rewrite theories, including a background theory, negative con-
straints in conditions, and “open system” rules modeling interaction with an outside environment. QLOCK can be formalized
as a generalized rewrite theory R = (�̂, E
 B, R, th(T�̂/E
B), φ), in the sense of Definition 6, where φ maps each f ∈ �̂ to
∅ (no frozen positions), and �̂ is the kind completion of signature � below. R models a dynamic version of the QLOCK
mutual exclusion protocol [44], where (�, B) defines the protocol’s states, involving natural numbers, lists, and multisets
over natural numbers. � has sorts S = {Nat, List, MSet, Conf , State, Pred} with subsorts Nat < List and Nat < MSet and oper-
ators F = {0 : → Nat, s_ : Nat → Nat, ∅ : →MSet, nil : → List, __ :MSet MSet →MSet, _; _ : List List → List, dupl :MSet →
Pred, tt : → Pred, _|_|_|_ : MSet MSet MSet List → Conf , < _ > : Conf → State}, where underscores denote operator argument
placement. The axioms B are the associativity-commutativity of the multiset union __ with identity ∅, and the associativity
of list concatenation _; _ with identity nil. The only equation in E is dupl(s i i)= tt. It defines the dupl predicate by detecting
a duplicated element i in the multiset s i i (where s could be empty). The states of QLOCK are B-equivalence classes of
ground terms of sort State.

QLOCK is a mutual exclusion protocol where the number of processes is unbounded. Furthermore, in the dynamic ver-
sion of QLOCK presented below, such a number can grow or shrink. Each process is identified by a number. The system
configuration has three sets of processes (normal, waiting, and critical) plus a waiting queue. To ensure mutual exclusion,
a normal process must first register its name at the end of the waiting queue. When its name appears at the front of the
queue, it is allowed to enter the critical section. The first three rewrite rules in R below specify how a normal process i first
transitions to a waiting process, then to a critical process, and back to normal. The last two rules in R specify how a process
can dynamically join or exit the system.

n2w :< n i | w | c | q > → < n | w i | c | q ; i >

w2c :< n | w i | c | i ; q > → < n | w | c i | i ; q >

c2n :< n | w | c i | i ; q > → < n i | w | c | q >

join :< n | w | c | q > → < n i | w | c | q > if ϕ
exit :< n i | w | c | q > → < n | w | c | q >

where ϕ ≡ dupl(n i w c) �= tt, i is a number, n, w, and c are, respectively, normal, waiting, and critical process identifier sets,
and q is a queue of process identifiers. Note that join makes QLOCK an open system in the sense explained earlier in this
section. In the intended use of QLOCK, any state < n | w | c | q > will be such that the multiset n w c is actually a set, so
that dupl(n w c) �= tt holds. Note that this is an invariant preserved by all the above rules.

Transition System Semantics of Generalized Rewrite Theories. Given a generalized rewrite theory R = (�, G, R, T , φ) we
can associate to it the transition system TR = (T�/G , →R), resp. TR(X) = (T�/G(X), →R), where, by definition, given
[u], [v] ∈ T�/G,[s] (resp. [u], [v] ∈ T�/G,[s](X)) for some [s] ∈ Ŝ , [u] →R [v] holds iff u →R v holds in the sense of Defini-
tion 6. Both TR and TR(X) are �-transition system in the following sense:

Definition 7. (�-Transition System and Homomorphism). Given a kind-complete OS signature �, a �-transition system is a
pair (A, →A) where: (i) A is a �-algebra; and (ii) →A is a Ŝ-indexed family of relations →A= {→A[s]⊆ A2[s]}[s]∈ Ŝ .

A homomorphism of �-transition systems h : (A, →A) → (B, →B) is a �-homomorphism h : A → B such that for each
[s] ∈ Ŝ and a, a′ ∈ A[s] , a →A[s] a′ implies h(a) →B[s] h(a′). This defines a category Trans� .

Note that h : (A, →A) → (B, →B) is an isomorphism in this category iff: (i) h is a �-isomorphism, and (ii) b →B[s] b′
implies h−1(b) →A[s] h−1(b′). Intuitively, such an isomorphism could be called a “bijective algebraic bisimulation,” and a
homomorphism an “algebraic simulation map.”

Given a generalized rewrite theory R = (�, G, R, T , φ) we say that a �-transition system (A, →A) satisfies the theory R,
denoted (A, →A) |=R iff: (i) A ∈ OSAlg(�,G) , and (ii) for each α ∈ [X→A] the unique �-homomorphism _α : T�/G(X) → A
is a �-transition system homomorphism _α : TR(X) → (A, →A). This defines a full subcategory TransR ⊆ Trans� .

Lemma 1. TR is the initial object of TransR .

When R = (�, G, R, φ) is a standard rewrite theory, the �-transition system TR is closely related to the initial reacha-
bility model of R [19], whose associated �-transition system is the transitive closure (T�/G , →∗

R) of TR . Roughly speaking,
TR is the “one step rewrite” fragment of the initial reachability model in [19].

Definition 6 is very general; in a sense too much so: in R = (�, G, R, T , φ), besides the generality of the rules R ,
no assumptions are made about the (possibly conditional) equations G which we are rewriting modulo in each transition

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 9
u →R v . In such generality, even symbolic execution of R may be hard to attain. We can substantially improve the situation
if we assume that G = E
 B , with B regular and linear unconditional axioms for which � is B-preregular and =B is
decidable, and such that (�, G) has a decomposition (�, B, �E). Strictly speaking, such decompositions have only been defined
in Section 2 for G a set of unconditional equations. However, as shown in, e.g., [33,65], the notion of decomposition of
(�, E
 B) generalizes to conditional equations E by means of the notion of a convergent, strongly deterministic rewrite
theory (�, B, �E). Likewise, the Church-Rosser Theorem, the notion of canonical term algebra C�/�E,B , and the isomorphism
C�/E,B ∼= T�/E
B naturally extend to the conditional case for such decompositions [65]. Under these extra assumptions on
R, a much simpler rewrite relation →R/B with the rules R modulo B as well as a much simpler �-transition systems can
be defined:

Definition 8. (→R/B Relation and Canonical �-Transition System). Let R = (�, E
 B, R, T , φ) be such that (�, E
 B) has a
decomposition (�, B, �E) in the above-mentioned sense.

Given two terms u, v ∈ T�,[s](X) for some [s] ∈ Ŝ , the rewrite relation u →R/B v holds iff there exists a u′ ∈ T�(X) with
u =B u′ , a φ-unfrozen position p in u′ , a rule l → r if ϕ in R and a substitution θ such that: (i) T |= ϕθ ; (ii) u′|p = lθ ; and
(iii) v = u′[rθ]p .

The �-transition system CR(X) (resp. CR) is the pair (C
�/�E,B(X), →CR) (resp. (C

�/�E,B , →CR |C2
�/�E,B

)) where for

[u], [v] ∈ C
�/�E,B(X) (resp. [u], [v] ∈ C

�/�E,B), [u] →CR [v] holds iff there exists w ∈ T�(X) such that: (i) u →R/B w , and
(ii) [v] = [w!�E,B].

3.1. The coherence problem

Note that it follows from the above definition of canonical transition systems and from Definition 6 that if [u]B →CR[v]B , then [u]E
B →R [v]E
B . And since the isomorphism h : C
�/�E,B

∼= T�/E
B (resp. h : C
�/�E,B(X) ∼= T�/E
B(X)) is precisely

the mapping h : [u]B �→ [u]E
B , this means that we have a homomorphism of �-transition systems h : CR → TR (resp.
h : CR(X) → TR(X)). However, although h is a �-isomorphism, it fails in general to be an isomorphism of �-transition
systems. This is well-known for even trivially simple rewrite theories R = (�, E
 B, R, φ) such as R with � unsorted and
consisting of constants a, b, c, E = {a = b}, B = ∅, and R = {a → c}, where →CR= ∅, but →R= {({a, b}, {c})}. Since TR is
initial in TransR , this of course means that in general CR /∈ TransR , and likewise CR(X) /∈ TransR . Therefore, canonical
transition systems, although simpler than TR or TR(X), cannot be used to reason correctly about R-computations. This is
the so-called coherence problem.

Call R = (�, E
 B, R, T , φ) with decomposition (�, B, �E) coherent (resp. ground coherent) iff the �-transition system
homomorphism h : CR(X) → TR(X) (resp. h : CR→ TR) is an isomorphism. Coherence can be characterized by an easier
to check condition that generalizes ideas in [98,33]:

Theorem 4. Let R = (�, E
 B, R, T , φ) with (�, B, �E) a decomposition of (�, E
 B). Then R is coherent (resp. ground coherent)
iff for each u, v ∈ T�(X) (resp. u ∈ T� , v ∈ T�(X)) such that u →R/B v (resp. u →R/B v and v!�E,B ∈ T�) there is a term v ′ ∈ T�(X)

such that u!�E,B →R/B v ′ and v!�E,B =B v ′!�E,B .

In both Definition 8 and Theorem 4, a perceptive reader may have noticed a notational discrepancy between two re-
lations: the relation →R/B and the relation →�E,B already defined in Section 2. One would instead have expected to
see the relations →R,B and →�E,B . Let me clarify and resolve this matter by first defining, for any generalized rewrite
theory R = (�, E
 B, R, T , φ) satisfying the assumptions in Definition 8, the rewrite relation →R,B . Given two terms
u, v ∈ T�,[s](X) for some [s] ∈ Ŝ , the rewrite relation u →R,B v holds iff there exists a φ-unfrozen position p in u, a rule
l → r if ϕ in R and a substitution θ such that: (i) T |= ϕθ ; (ii) u|p =B lθ ; and (iii) v = u[rθ]p . Two things to note are that:
(1) →R,B ⊆→R/B , and (2) if R is topmost, the relations →R,B and →R/B coincide. It is for this second reason, and for the
sake of simplicity, that, for the moment, I have stated Definition 8 and Theorem 4 in terms of the relation →R/B . But, as I
show below, both of them can be restated in terms of →R,B .

A third thing to note is that, for non-topmost rewrite theories, the relation →R,B is typically much easier to implement
than the relation →R/B , since we can use a B-matching algorithm to determine whether u|p =B lθ for some position p in
u. The fourth and most crucial thing to say is that, by making the rules in R strictly B-coherent [71], we can safely replace
→R/B by →R,B throughout.

Strict B-Coherence. The word “coherence” has several related, yet distinct, technical meanings. Coherence in the sense
shown in Theorem 4 (which more precisely should be called strong coherence [98,33] between the rules R and the equations
E modulo B), is a certain “commutativity-like” property between application of rules R and application of oriented equations
�E modulo B . Instead, the simpler notion of strict B-coherence [71] is the property that the equality relation =B defines a
bisimulation (and therefore, for all practical purposes, a semantic equivalence) between the relations →R,B and →R/B . Since
we have →R,B ⊆→R/B and =B ; →R/B =→R/B , strict B-coherence boils down to the property that if u →R/B v and u =B u′
then there exists v ′ such that: (i) u′ →R,B v ′ , and (ii) v =B v ′ . Strict B-coherence is related to a more general, yet less
well-behaved, notion of coherence modulo equations in [55].

10 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
The usefulness of strict B-coherence can best be illustrated by its absence.

Example 4. (Sorting). Consider the following generalized rewrite theory R = (�, E
 B, R, T , φ) where: (i) � has sorts Nat,
Bool, NeList (non-empty lists), and List, subsorts Nat < NeList < List, constants 0, 1 of sort Nat, nil of sort List, true and false
of sort Bool, a binary + operator of sort Nat, a subsort-overloaded list concatenation operator _; _ : NeList NeList → NeList,
_; _ : List List→ List, and a binary operator _≥ _ : Nat Nat→ Bool. B are the axioms of associativity, commutativity and unit
element 0 for +, and of associativity for _; _, and E are the equations n +m ≥ n = true, n ≥ n +m + 1 = false, l; nil= l, and
nil; l = l, where n, m have sort Nat and l has sort List, R has the single rule9:

n;m→m;n if n≥m= true∧ n �=m,

T is the theory th(T�/E
B), and φ(f) = ∅ for each operator in �.
In this theory, the relation →R,B fails to be strictly B-coherent. For example, since T�/E
B |= n + 1 ≥ n = true∧ n + 1 �= n,

and (0; n + 1); n =B 0; (n + 1; n), we have (0; n + 1); n →R/B 0; (n; n + 1). However, the term (0; n + 1); n cannot be rewritten
with the relation →R,B , neither at the top, nor at position 1.

What can be done to make →R,B strictly B-coherent? To complete it by adding to R all its B-extensions. The general
definition for an arbitrary B having linear and regular equations is given in [71]; but all we need here is the Peterson and
Stickel definition [81] for the case where B consists of associativity and/or commutativity axioms, which adds to R the
rules:

1. l; (n; m) → l; (m; n) if n ≥m = true∧ n �=m
2. (n; m); l′ → (m; n); l′ if n ≥m = true∧ n �=m
3. l; ((n; m); l′) → l; ((m; n); l′) if n ≥m = true∧ n �=m

where l, l′ have sort List. Call R the set obtained by adding to R the above B-extensions. Note that, using rule (1), we can
now perform the rewrite step (0; n + 1); n →R,B 0; (n; n + 1).

I refer the reader to [71] for a detailed treatment of strict B-coherence of conditional rewrite theories. Since we are now
considering generalized rewrite theories of the form R = (�, E
 B, R, T , φ), a slight generalization of the framework in [71]
is needed: (i) we need to generalize the rewrite conditions used in [71] to QF �-formulas ϕ , (ii) we should replace the
rewriting satisfaction of conditions by the more abstract condition satisfaction based on the validity check T |= ϕθ , and (iii)
we need to impose the additional requirement of rewriting only at positions p not frozen by the frozenness map φ.

How should Definition 8 and Theorem 4 be reformulated in terms of the →R,B relation? We should just require in both
cases that the rules R are strictly B-coherent, that is, that the relation =B makes →R,B and →R/B bisimilar. Then we can
replace →R/B by →R,B everywhere in Definition 8 and Theorem 4.

This, however, only solves the issue of strict B-coherence. We should not lose track of the different and actually thornier
issue of strong coherence between rules R and oriented equations �E modulo B characterized in Theorem 4. How can we
ensure that a generalized rewrite theory R = (�, E
 B, R, T , φ), whose rules R are strictly B-coherent and where (�, B, �E)

is a convergent rewrite theory is actually strongly coherent (resp. strongly ground coherent)?
There are essentially two approaches. The first is to slightly generalize the methods developed in [33] to check the strong

coherence (resp. strong ground coherence) of a given generalized rewrite theory R. Such methods are based on suitable
critical pairs modulo B between conditional rules in R and (oriented) conditional equations in �E modulo axioms B . The
generalization in question is relatively straightforward. The equational conditions (conjunctions of equalities) in rewrite
rules considered in [33] need to be generalized to rule conditions that are QF formulas; and the executability conditions in
[33] need to be likewise generalized to allow, for example, rewrite rules specifying open systems, such as the join rule in
Example 3. I refer the reader to [33] for a detailed description of the conditions ensuring strong coherence (resp. ground
strong coherence) that need to be generalized. The key theorem to be generalized is Theorem 5 in [33].

Rather than delving into the details of this theorem and its generalization, let me sketch how its natural generalization
can be applied to the strictly B-coherent version of the generalized rewrite theory of Example 4 obtained by adding to it
the B-extension rules (1)–(3) to get a bigger set R of rules. First of all, condition (ii) in Theorem 5 of [33] is easily checked
to hold, since the only equations that can have rewrites with rules in R below them are the equations l; nil= l, and nil; l = l,
which are both linear. Let me illustrate how condition (i) in Theorem 5 of [33] would be checked by illustrating it with
a specific critical pair modulo B between a rule in R and an oriented equation in E . For example, the rule l; (n; m) →

9 It is certainly the case that this rule’s condition could have been made simpler by: (i) defining a new predicate _ > _ : Nat Nat→ Bool, and (ii) replacing
the QF condition n ≥ m = true ∧ n �= m by the single equality n > m = true. My interest, however, is to give examples of generalized rewrite theories
whose rules have QF conditions that are not conjunctions of equalities. In this simple example, this extra generality could have been avoided, but not
at all easily in the QLOCK example (Example 3), and certainly not without paying a heavy price in many other useful examples. Furthermore, properties
crucial for symbolic executability such as the decidability of the background theory T (or that of an appropriate reduct of it) can be easily lost in the, now
unnecessary, effort to force conditions to be conjunctions of equalities.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 11
l; (m; n) if n ≥m = true∧ n �=m and the renamed rule nil; l′ = l′ have a B-unifier of the form {l �→ nil, l′ �→ (n; m)} yielding a
conditional critical pair of the form:

(n≥m= true∧ n �=m)⇒ [n;m→m;n]
But this conditional critical pair can be discharged with rule n; m → m; n if n ≥ m = true ∧ n �= m by using the (suitable
generalization of) the context joinability method explain in Section 4.1 of [33]. Specifically, using the generalized rewrite
theory (�({n, m}), E
 B, R, T ∪ {n ≥m = true ∧ n �=m}, φ), where we have added n, m as fresh constants and the ground
axiom n≥m= true∧n �=m to T , we can now rewrite with →R,B the ground term n; m to m; n in this extended theory, and
therefore discharge the given critical pair. In a similar way, showing that a conditional critical pair ψ ⇒ [u → v] is unfeasible
(see Section 4.1 of [33]) for (�, E
 B, R, T , φ) now amounts to proving that ψ is T -unsatisfiable.

There is, however, a second, completely different and new, method that can be used to solve the strong ground coherence
problem of a topmost generalized rewrite theory R = (�, E
 B, R, T , φ) under the assumptions in Definition 8, and is
applicable also to the special case of a topmost rewrite theory under the assumptions in [33]. The issue is no longer to
check whether a (generalized) topmost rewrite theory R is strongly coherent. Instead, the question asked and answered for
the first time is: Can we, under suitable conditions, transform a generalized topmost rewrite theory R into a semantically
equivalent theory Rl , called its ground coherence completion, so that Rl is itself ground coherent? This question is answered
in Section 4 below.

4. Coherence completion of generalized rewrite theories

I present below several theory transformations making a given generalized rewrite theory ground coherent. I also explain
how these methods can be automated and how they can be applied to: (i) make rewrite theories symbolically executable;
(ii) reason about equational abstractions of rewrite theories [75], and (iii) achieve symbolic execution of a widest possible
class of such rewrite theories. But first some assumptions on R need to be made.

Assumptions on RRR. The generalized rewrite theory R has the form R = (�, E
 B, R, T , φ), with (�, B, �E) a decomposition
of (�, E
 B). Furthermore: (i) R is topmost; (ii) there are protecting inclusions of decompositions10

(�, B�, �E�)⊆ (�1, B1, �E1)⊆ (�, B, �E)

where: (a) �, �1 and � share the same poset of sorts; (b) E� and E1 are unconditional equations; (c) (�, B�, �E�) is a
constructor decomposition of (�, B, �E) and, a fortiori, of (�1, B1, �E1); and (d) (�1, B1, �E1) is an FVP decomposition; and
(iii) each rewrite rule l → r if ϕ in R is such that l is a �1-term.

Are these assumptions “reasonable”? Regarding assumption (i), many rewrite theories of interest, including theories
specifying distributed object-oriented systems and rewriting logic specifications of concurrent programming languages, can
be easily specified as topmost rewrite theories by simple theory transformations, e.g., [68]. Regarding assumptions (ii)–(iii),
some remarks are in order. First, the specification of a constructor subsignature � is either explicit in most applications
or typically easy to carry out. Second, in most specifications of rewrite theories the lefthand side l of a rule l → r if ϕ
is almost always a constructor term. In practice, l may fail to be a constructor in two special cases: (1) the case of an
equational abstraction [75], where l typically was a constructor term before the abstraction was defined, but after such
abstraction definition a smaller signature � of constructors can be defined; or (2) the somewhat subtle case, illustrated by
the sorting rewrite theory in Example 4, where the signature � of constructors has a supersignature �1 ⊇ �, where for
every operator in �1 \ � there is a subsort-overloaded typing of it in � itself. Specifically, in Example 4 the constructor
decomposition has the form (�, B, ∅), with � consisting of the constants 0, 1 of sort Nat, nil of sort List, true and false of
sort Bool, a binary + operator of sort Nat, and the list concatenation operator _; _ : NeList NeList → NeList, and B are the
axioms of associativity, commutativity and unit element 0 for +, and of associativity for _; _. Instead, the decomposition
(�1, B, �E1) keeps these same axioms and adds: (i) the (associative) defined operator _; _ : List List→ List, and (ii) its defining
equations E1, namely, l; nil= l, and nil; l = l. The somewhat subtle points is that the lefthand sides of the B-extension rules
(1)–(3) added to the original sorting rule of Example 4 are not �-terms, but only �1-terms. In case (2), the decomposition
(�1, B1, �E1) is typically FVP in practice; in fact, for the just-mentioned Example 4 the above (�1, B, �E1) is FVP. In case
(1) the equational abstractions used for model checking purposes tend to be simple enough that either they are FVP or
can be easily made so by a simple theory transformation. In summary, therefore, conditions (i)–(iii) cover a very general
class of practical applications. There is, furthermore, a very useful special case of condition (ii), namely, the case when
(�1, B1, �E1) = (�, B�, �E�).

10 Recall that the strongly deterministic and convergent rules �E may be conditional. We are therefore using Definition 3 in its straightforward generalization
to the conditional case.

12 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
4.1. The R �→Rl transformation

For R = (�, E
 B, R, T , φ) satisfying the above assumptions, the theory Rl has the form Rl = (�, E
 B, Rl, T , φ), where

Rl = {l′ → (rγ)!�E,B if (ϕγ)!�E,B | (l′, γ) ∈ �l� �E1,B1
∧ l→ r if ϕ ∈ R}.

As an optimization, we can remove from Rl those rules B-subsumed by other rules in Rl , where the B subsumption relation
(l → r if ϕ) �B (l′ → r′ if ϕ′) holds between rules iff there is a substitution α such that lα =B l′ , rα =B r′ and (ϕα)!�E,B =B ϕ′ .
That is, l → r if ϕ is more general than l′ → r′ if ϕ′ up to B-equality, making l′ → r′ if ϕ′ redundant. The transformation
R �→ Rl can be easily automated as a meta-level function in Maude 2.7.1 using the metaGetIrredundantVariant
function.

Theorem 5. Under the above assumptions on R, Rl is semantically equivalent to R, and Rl is ground coherent.

Example 5. The R �→Rl transformation can be used to obtain a ground coherent theory for an equational abstraction of an
infinite-state, out-of-order and fault-tolerant communication channel, which thus becomes finite-state and therefore analyz-
able by standard LTL model checking. The Maude specifications of such a fault-tolerant out-of-order communication channel
FT-CHANNEL and its equational abstraction FT-CHANNEL-ABS import the functional module NAT-LIST of Example 1
and are as follows:

mod FT-CHANNEL is protecting NAT-LIST .
sorts Msg MsgSet Channel .
subsorts Msg < MsgSet .
op null : -> MsgSet [ctor] .
op __ : MsgSet MsgSet -> MsgSet [ctor assoc comm] .
op [_,_]_[_,_] : NatList Nat MsgSet NatList Nat -> Channel [ctor] .
op {_,_} : Nat Nat -> Msg [ctor] .
op ack : Nat -> Msg [ctor] .
op [_,_,_] : Bool Channel Channel -> Channel [frozen] . *** if-then-else

vars N M I J K : Nat . vars L P Q R : NatList .
var MSG : Msg . vars S S’ : MsgSet . vars CH CH’ : Channel .

eq [true,CH,CH’] = CH [variant] .
eq [false,CH,CH’] = CH’ [variant] .

eq S null = S [variant] .

rl [send] : [J ; L,N] S [P,M] => [J ; L,N] {J,N} S [P,M] .
rl [recv] : [L,N] {J,K} S [P,M] =>

[(K ~ M),
[L,N] S ack(K) [P ; J, M + 1],
[L,N] S ack(K) [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>
[(K ~ N),

[L,N + 1] S [P,M],
[J ; L,N] S [P,M]] .

crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S =/= null .
endm

mod FT-CHANNEL-ABS is including FT-CHANNEL .
vars S S’ : MsgSet .
eq S S = S [variant] . *** set idempotency
eq S S S’ = S S’ [variant] . *** B-coherence extension
endm

The sender (resp. receiver) is located at the left (resp. right) side of the channel and has a buffer storing a list of numbers
and a counter. The channel is a multiset of messages modeling out-of-order communication; and is lossy, as modeled by
the [loss] rule. Fault-tolerant in-order communication is ensured by: (i) sending messages of the form {J,N} with J the
number being sent and N the value of the sender’s counter, (ii) the receiver sending acknowledgments, and (iii) the sender
beginning to send the next item only after receipt of the previous one has been acknowledged. Because of the [send] rule,
the number of messages in the channel is unbounded, so explicit-state LTL model checking is impossible. For this reason,
FT-CHANNEL-ABS specifies an equational abstraction [75], where the contents of the channel becomes a set thanks to the
idempotency equation S S = S, so that LTL model checking becomes possible.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 13
However, FT-CHANNEL-ABS is not ground coherent, and therefore its explicit-state LTL model checking would be incor-
rect, because lack of ground coherence means that the canonical transition system CR is such that CR /∈ TransR , and in fact
CR has fewer transitions than the initial model TR . Since in Maude explicit-state LTL model checking (or even just reachabil-
ity analysis using the search command) would use CR , but this is only permitted when, by ground coherence, CR and TR
are isomorphic, all bets are off regarding the correctness of any such reachability analysis or LTL model checking. This lack of
ground coherence occurs for two different reasons: (1) even without the set idempotency abstraction, the identity equations
for list concatenation and for multiset union cause lack of coherence; and (2) to make things worse, the idempotency equa-
tion used in the abstraction causes additional coherence problems. All these coherence problems are solved automatically
by the R �→Rl transformation. Specifically, in this case R is a generalized rewrite theory R = (�̂, E
 B, R, th(T�̂/E
B), φ),
in the sense of Definition 6, where: (i) its signature � of constructors is specified by the operators declared with the ctor
keyword, plus the true and false constants in the imported BOOL-OPS module; (ii) the frozenness function φ just
freezes the if-then-else operator with the frozen keyword (therefore the rewrite theories defined by FT-CHANNEL and
FT-CHANNEL-ABS are topmost); and (iii) at the equational level of FT-CHANNEL-ABS there are protecting inclusions:

(�, B�, �E�)⊆ (�1, B1, �E1)⊆ (�, B, �E)

where B� = B1 are the equational axioms declared by the assoc and/or comm keywords, �E� are the identity equations for
concatenation and union, and the set idempotency equation and its B�-coherence extension, �E1 adds to �E� the equations
for the if-then-else operator, and (�, B, �E) adds additional functions symbols, equations and axioms for Boolean operations
in the imported BOOL-OPS module from Maude’s standard prelude. Note that, due to the negative condition in the [loss]
rule, this is indeed a generalized rewrite theory.

The key point is that (�1, B1, �E1) is FVP, a fact that can be easily checked in Maude. Therefore the R �→Rl transforma-
tion is well defined. Specifically, by computing variants of the lefthand sides using Maude, the coherence completion adds
to the rules R in the module the following rules:

rl [send] : [J,N] S [P,M] => [J,N] {J,N} S [P,M] .

rl [recv] : [L,N] {J,K} [P,M] =>
[(K ~ M),

[L,N] ack(K) [P ; J, M + 1],
[L,N] ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} [P,M] =>
[(K ~ M),

[L,N] {J,K} ack(K) [P ; J, M + 1],
[L,N] {J,K} ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} S [P,M] =>
[(K ~ M),

[L,N] {J,K} S ack(K) [P ; J, M + 1],
[L,N] {J,K} S ack(K) [P,M]] .

rl [ack-recv] : [J,N] ack(K) S [P,M] =>
[(K ~ N),

[nil,N + 1] S [P,M],
[J,N] S [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) [P,M] =>
[(K ~ N),

[L,N + 1] null [P,M],
[J ; L,N] null [P,M]] .

rl [ack-recv] : [J,N] ack(K) [P,M] =>
[(K ~ N),

[nil,N + 1] null [P,M],
[J,N] null [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) [P,M] =>
[(K ~ N),

[L,N + 1] ack(K) [P,M],
[J ; L,N] ack(K) [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>
[(K ~ N),

[L,N + 1] ack(K) S [P,M],
[J ; L,N] ack(K) S [P,M]] .

rl [ack-recv] : [J,N] ack(K) [P,M] =>

14 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
[(K ~ N),
[nil,N + 1] ack(K) [P,M],
[J,N] ack(K) [P,M]] .

rl [ack-recv] : [J,N] S ack(K) [P,M] =>
[(K ~ N),

[nil,N + 1] S ack(K) [P,M],
[J,N] S ack(K) [P,M]] .

crl [loss] : [L,N] S’ [P,M] => [L,N] S’ [P,M] if null =/= null .
crl [loss] : [L,N] S [P,M] => [L,N] null [P,M] if S =/= null .
crl [loss] : [L,N] S [P,M] => [L,N] S [P,M] if S =/= null .
crl [loss] : [L,N] S S1 S’ [P,M] => [L,N] S1 S’ [P,M]

if S S1 =/= null .
crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S S’ =/= null .
crl [loss] : [L,N] S S’ [P,M] => [L,N] S S’ [P,M] if S =/= null .

Some of them, namely, the new [send] rule, the first new [recv] rule, the first three new [ack-recv] rules, and
the first two new [loss] rules would be needed for coherence even without the idempotency abstraction. The remaining
rules are needed for coherence due to that abstraction. Of course, the rule

crl [loss] : [L,N] S’ [P,M] => [L,N] S’ [P,M] if null =/= null .

has an unsatisfiable condition and can therefore be dropped.
Let us focus on the transformation of the message reception rule:

rl [recv] : [L,N] {J,K} S [P,M] =>
[(K ~ M),

[L,N] S ack(K) [P ; J, M + 1],
[L,N] S ack(K) [P,M]] .

The rule’s lefthand side describes a state in which the sender’s state [L,N] consists of a list L of items still to be sent,
and a counter N, and the receiver’s state [P,M] consists of a list P of items already received and a counter M. The channel’s
contents is the multiset {J,K} S where {J,K} is a message sending item J marked as message number K sent by the
sender to ensure in-order communication. The rest of the messages in the channel are described by the variable S of sort
MsgSet. The rule’s righthand side describes two alternative behaviors of the receiver by means of the if-then-else operator
Depending on the equality test K ~ M between the message number K in the message and the receiver’s counter M, the
sender either appends the item at the end of its list and increases its counter, or discards the message without changing its
counter. But in either case an ack(K) message signaling the receipt of message number K is sent to the sender.

The “variants” of the above [recv] rule which are added by the theory transformation R �→Rl are:

rl [recv] : [L,N] {J,K} [P,M] =>
[(K ~ M),

[L,N] ack(K) [P ; J, M + 1],
[L,N] ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} [P,M] =>
[(K ~ M),

[L,N] {J,K} ack(K) [P ; J, M + 1],
[L,N] {J,K} ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} S [P,M] =>
[(K ~ M),

[L,N] {J,K} S ack(K) [P ; J, M + 1],
[L,N] {J,K} S ack(K) [P,M]] .

4.2. The R �→R�1 transformation

The transformation R �→R�1 is not a coherence completion, but a stepping stone towards a more powerful such com-
pletion discussed later. The problem solved by the transformation R �→R�1 has everything to do with symbolic execution
and is the following. As already mentioned, a generalized rewrite theory R of practical interest will typically have rules
l → r if ϕ where the lefthand side l is either a constructor term, or at least a �1-term with (�1, B1, �E1) FVP. But what
about the rule’s righthand side r? Nothing can be assumed in general about r. It can be an arbitrary �-term because aux-
iliary functions in � may be needed to update the state. This poses a serious challenge for symbolic reasoning about R,
which typically will use symbolic methods such as equational unification and reachability analysis by narrowing modulo an
equational theory. As long as r is an �-term or at least a �1-term with (�1, B1, �E1) FVP, this can easily be done after each

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 15
symbolic transition step, because we can use variant-based unification to compute unifiers in the FVP theories (�, B�, �E�) or
(�1, B1, �E1), and likewise narrowing modulo such theories to perform symbolic reachability analysis. Instead, if, as usual,
r is an arbitrary �-term, symbolic reasoning, while not impossible, becomes much harder: if the decomposition (�, B, �E)

is unconditional, we can still perform variant E
 B-unification by variant narrowing as supported in Maude 2.7.1 for con-
vergent unconditional theories, and likewise narrowing-based reachability analysis based on such E
 B-unification; but the
number of unifiers is in general infinite, leading to impractical search spaces with potentially infinite branching at each
symbolic state. In Lenin’s words: what is to be done? Perform the R �→R�1 transformation! This transformation generalizes
to a general FVP decomposition (�1, B1, �E1) laying between (�, B�, �E�) and a possibly conditional (�, B, �E) the special
case, described in [91], of a transformation R �→R� making all righthand sides constructor terms. The extra generality of
the R �→R�1 transformation is useful because it has a better chance of becoming the identity transformation11 for many
rules in R.

The transformation R �→ R�1 is defined as follows. By our assumptions on R each rewrite rule has the form l →
r if ϕ with l ∈ T�1 (X). For symbolic reasoning purposes it will be very useful to also achieve that r ∈ T�1 (X). If R =
(�, E ∪ B, R, T , φ), R�1 has the form R�1 = (�, E ∪ B, R�1 , T , φ), where the rules in R�1 are obtained from those in R by
transforming each l → r if ϕ in R into the rule l → r′ if ϕ ∧ θ̂ , where: (i) r′ ∈ T�1 (X) is the �1-abstraction of r obtained by
replacing each length-minimal position p of r where the top symbol top(t|p) of t|p does not belong �1 by a fresh variable
xp whose sort is the least sort of t|p , and (ii) θ̂ =∧

p∈P t|p = xp , where P is the set of all length-minimal positions in r
with top(t|p) /∈ �1. As an optimization, whenever p, p′ ∈ P are such that tp =B t′p , we can use the same fresh variable for
xp and xp′ .

Example 6. Since, by specifying order in the natural numbers with constructors an ACU addition +, constants 0, 1 of sort
Nat, and �, ⊥ of sort Bool, Presburger arithmetic with > and ≥ predicates and extended also with an if-then-else operator
[_, _, _] added to any desired sort has an FVP decomposition with signature �1 with decidable th(T�1/E1
B1) [73], if we
have a topmost system whose states are pairs 〈n, m〉 of natural numbers, and where one of its rules has the form:

〈n,m〉→ [n > m, 〈n ∗m,m〉, 〈n,n ∗m〉]
then, since the multiplication operator _ ∗ _ is in � but outside �1, the set P of length-minimal positions of the righthand
side is P = {2.1, 3.2}. And since the terms at such positions are both n ∗m, we obtain the transformed rule:

〈n,m〉→ [n > m, 〈y,m〉, 〈n, y〉] if y := n ∗m,

where y has sort Nat and I have used Maude’s “matching condition” notation y := n ∗m for the equation n ∗m = y to
emphasize its executability by matching, which, operationally, corresponds to viewing it as an equational rewrite condition
of the form n ∗m →∗

�E,B
y.

Although a generalized rewrite theory R need not be executable in the standard sense, the R �→R�1 transformation
preserves standard rule executability. To explain this, I need to explain the general sense in which a rewrite rule l → r if ϕ in R
with ϕ =∧

i=1..n ui = vi a conjunction of equalities becomes executable by evaluating its condition ϕ by �E, B rewriting and
B-matching. The sense, as explained in [33], is that we view ϕ as a �E, B-rewrite condition

∧
i=1..n ui → vi and require the

following strong determinism conditions: (i) ∀ j ∈ [1..n], vars(u j)⊆ vars(l)∪⋃
k< j vars(vk), (ii) vars(r) ⊆ vars(l) ∪⋃

j≤n vars(v j),
and (iii) each v j is strongly �E, B-irreducible in the precise sense that v jσ is in �E, B-normal form for each �E, B-normalized
substitution σ . The point is that if properties (i)–(ii) hold for the original rule l → r if ϕ in R , then they also hold for its
transformed rule l → r′ if ϕ ∧ θ̂ in R�1 . This is clear for (i) and (ii) by construction, and follows also for (iii) because in each
rewrite condition t|p → xp obtained from θ̂ the variable xp is trivially strongly �E, B-irreducible. In summary we have:

Theorem 6. Under the above assumptions on R (dropping the topmost assumption), R�1 is semantically equivalent to R. Further-
more, if the rules in R are executable in the standard sense, then those is R�1 are also executable.

4.3. The R �→R�

�1,l,r transformation

We can now use the previous R �→ R�1 transformation to achieve simultaneously two important goals: (1) obtain a
generalized rewrite theory R�

�1,l,r ground semantically equivalent to R and such that the lefthand and righthand sides of
each of its rules are constructor terms. This can be very useful for symbolic executability purposes, since we only need to
perform E�
 B�-unification steps, which in many examples where E� = ∅ reduce to just B�-unification steps; and (2)
ensure that R�

�1,l,r is ground coherent.

11 For example, since in Example 5 the underlying equational theories of both FT-CHANNEL and FT-CHANNEL-ABS are FVP, for them we can chose
(�1, B1, �E1) = (�, B, �E), so that the R �→R�1 transformation becomes the identity transformation.

16 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
As already mentioned, the transformation Q �→Q�1 will be used here as a stepping stone. Therefore, we may assume
without loss of generality that it has already been applied, so that the input theory in this, second transformation R �→R�

�1,l,r
is of the form R =Q�1 . Therefore, R = (�, E∪ B, R, T , φ) is such that in each rule l → r if ϕ in R both l and r are �1-terms,
where (�1, B1, �E1) is an FVP decomposition protecting a constructor decomposition (�, B�, �E�) and itself protected by
(�, B, �E). The transformed theory R�

�1,l,r has then the form R�

�1,l,r = (�, E ∪ B, R�
�1,l,r, T , φ), where

R�
�1,l,r = {l′ → r′ if (ϕγ)!�E,B | (l→ r if ϕ) ∈ R ∧ (〈l′, r′〉, γ) ∈ �〈l, r〉��

�E1,B1
}

where we assume without loss of generality that a pairing operator 〈_, _〉 has been added as a free constructor to each
kind in �1 and therefore also to �. The key point, of course, is that now the lefthand and righthand sides of a rule
l′ → r′ if (ϕγ)!�E,B in R�

�1,l,r are constructor terms. This has two important advantages: (1) such rules can be symbolically
executed, for example for reachability analysis, by performing E�
 B�-unification, which it typically much simpler and
efficient that E1
 B1-unification; and (2) a rule α : l′ → r′ if (ϕγ)!�E,B can be executed backwards as the rule α−1 : r′ →
l′ if (ϕγ)!�E,B , which can be very useful for backwards symbolic reachability analysis (more on this in Section 6.3). Here are
the key properties:

Theorem 7. Under the above assumptions on R, R�

�1,l,r is ground semantically equivalent to R. Furthermore, R�

�1,l,r is ground
coherent.

As an immediate corollary of Theorem 7, we have the isomorphisms of �-transition systems: CR�

�1,l,r

∼= TR�

�1,l,r

∼= TR .

Furthermore, CR�

�1,l,r
enjoys a very remarkable property, very useful for symbolic execution (see Section 6), which in general

is not satisfied by other canonical models CR , even assuming R coherent:

Proposition 1. Let [u], [v] ∈ C�/�E,B be such that [u] →C
R�

�1,l,r

[v]. Then, there is a rewrite rule l′ → r′ if (ϕγ)!�E,B in R�
�1,l,r

and a �E�, B�-normalized ground substitution δ such that u =B�
l′δ, v =B�

r′δ, and T |= (ϕγ)!�E,Bδ, and therefore a rewrite step
u →R�

�1,l,r ,B�
r′δ, with v =B�

r′δ.

In plain English, what Proposition 1 tells us about the [u] →C
R�

�1,l,r

[v] rewrite relation is that we can always choose

the rewrite rule l′ → r′ if (ϕγ)!�E,B in R�
�1,l,r and the �E�, B�-normalized ground substitution δ in such a way that in the

rewrite step u →R�
�1,l,r ,B�

r′δ the term r′δ is already �E�, B�-normalized, so that v =B�
r′δ and there is no need for the usual

additional step of �E�, B�-normalizing r′δ.

Example 7. The R �→ R�

�1,l,r transformation can be illustrated by the following Maude specification of a bank account
system which is an open system and uses various auxiliary functions to update an account’s state after each transaction:

fmod NAT-PRES-MONUS is protecting TRUTH-VALUE .
sort Nat .
ops 0 1 : -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .

op _>_ : Nat Nat -> Bool .
op _>=_ : Nat Nat -> Bool .

eq m + n + 1 > n = true [variant] .
eq n > n + m = false [variant] .

eq m + n >= n = true [variant] .
eq n >= m + n + 1 = false [variant] .

op _-_ : Nat Nat -> Nat . *** monus

eq n - (n + m) = 0 [variant] .
eq (n + m) - n = m [variant] .

endfm

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 17
mod BANK-ACCOUNT is protecting NAT-PRES-MONUS .
sorts Account Msg MsgConf State StatePair .
subsort Msg < MsgConf .

op < bal:_pend:_overdraft:_> : Nat Nat Bool -> Account [ctor] .
op mt : -> MsgConf [ctor] .
op withdraw : Nat -> Msg [ctor] .
op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .
op _#_ : Account MsgConf -> State [ctor] . *** state ctor
op [_,_,_] : Bool State State -> State . *** if-then-else

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .
vars s s’ : State . var msgs : MsgConf .

eq [true,s,s’] = s [variant] .
eq [false,s,s’] = s’ [variant] .

*** requesting to draw money having sufficient funds; the amount

*** requested is added to the amount of pending withdraw requests

rl [w-req] : < bal: n + m + x pend: x overdraft: false > # msgs =>
< bal: n + m + x pend: x + m overdraft: false > # withdraw(m),msgs .

*** actual withdrawing of money from account

rl [w] : < bal: n pend: x overdraft: false > # withdraw(m),msgs =>
[m > n ,

< bal: n pend: x overdraft: true > # msgs ,
< bal: (n - m) pend: (x - m) overdraft: false > # msgs] .

*** more money can be deposited in the account if not in overdraft

rl [dep] : < bal: n pend: x overdraft: false > # msgs =>
< bal: n + m pend: x overdraft: false > # msgs .

endm

An account’s state has the form < bal: n pend: x overdraft: b > # msgs where n is the current balance; x is
the amount of money that is currently pending to be withdrawn due to previous withdraw(m) messages; we can think of
such messages as writing of checks, requesting wire transfers, etc.; b is a Boolean flag indicating whether or not the account
is in the red (if it is, it gets blocked in the sense that no rule can be applied); and msgs is a multiset of such withdrawal
messages awaiting withdrawal. The intended meaning of the three rules is explained in the comments. Note that the deposit
rule [dep] has an extra variable m on the righthand side and models a non-deterministic environment form which new
money can arrive to the account. Therefore, BANK-ACCOUNT models an open system in the sense of Section 3. It is not
executable in the standard Maude sense, but is symbolically executable in Maude by narrowing with the rules modulo the
equations (more on this later).

Note that, at the equational level, we have protecting inclusions:

(�, B�, �E�)⊆ (�1, B1, �E1)⊆ (�, B, �E)

where the signature � of constructors has the true and false constants in the imported module TRUTH-VALUE, plus
the operators declared with the ctor keyword, and B� = B1 = B are ACU axioms for + and for multiset union. Therefore,
�E� = ∅, that is, these are free constructors modulo ACU. In this case, we furthermore have (�1, B1, �E1) = (�, B, �E), so
that E1 = E defines all the remaining non-constructor functions and can be oriented as convergent rules modulo ACU. The
key point is that (�1, B1, �E1) = (�, B, �E) is FVP, as can easily be checked in Maude. This means that the rewrite theory
R specified by BANK-ACCOUNT satisfies the input requirements for the R �→ R�

�1,l,r transformation. By computing the
constructor variants of the pairs 〈l, r〉 for the left- and right-hand sides l, r of the above three rules, we get the transformed
module:

mod BANK-ACCOUNT-CTOR is protecting NAT-PRES-MONUS .
sorts Account Msg MsgConf State StatePair .
subsort Msg < MsgConf .

op < bal:_pend:_overdraft:_> : Nat Nat Bool -> Account [ctor] .
op mt : -> MsgConf [ctor] .
op withdraw : Nat -> Msg [ctor] .

18 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483

op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .
op _#_ : Account MsgConf -> State [ctor] . *** state constructor
op [_,_,_] : Bool State State -> State [frozen] . *** if-then-else

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .
vars s s’ : State . vars msgs msgs’ : MsgConf .

eq [true,s,s’] = s [variant] .
eq [false,s,s’] = s’ [variant] .

rl [w-req] : < bal: n + m + x pend: x overdraft: false > # msgs =>
< bal: n + m + x pend: x + m overdraft: false > # withdraw(m),msgs .

rl [w] : < bal: n + m + x pend: m overdraft: false >
msgs,withdraw(m + x)

=>
< bal: n pend: 0 overdraft: false > # msgs .

rl [w] : < bal: n + m pend: m + x overdraft: false >
msgs,withdraw(m)

=>
< bal: n pend: x overdraft: false > # msgs .

rl [w] : < bal: n pend: y overdraft: false >
msgs’,withdraw(1 + n + x)

=>
< bal: n pend: y overdraft: true > # msgs’ .

rl [dep] : < bal: n pend: x overdraft: false > # msgs =>
< bal: n + m pend: x overdraft: false > # msgs .

endm

To further illustrate the R �→R�

�1,l,r transformation, let us focus on the rule [w] specifying how money can be with-
drawn from an account:

rl [w] : < bal: n pend: x overdraft: false > # withdraw(m),msgs =>
[m > n ,

< bal: n pend: x overdraft: true > # msgs ,
< bal: (n - m) pend: (x - m) overdraft: false > # msgs] .

The rule’s lefthand side describes the system’s state, which is a #-separated pair. Its left pattern < bal: n pend: x
overdraft: false > describes the current state of the account, which is not in the red. Its right pattern withdraw(m),
msgs describes a multiset of messages with an actual request withdraw(m) to withdraw the amount of money m and the
remaining messages described by the variable msgs. The rule’s righthand side describes the account’s behavior in response
to such a withdrawal request by means of an if-then-else operator (exactly as in Example 5) and the predicate m > n
testing whether or not the requested money exceeds the account’s current balance. If this is the case, the request is rejected
and the account goes into an overdraft state. Otherwise, the request is honored, the balance is updated, and the pending
debt is decreased accordingly. What this rewrite rule clearly illustrates is that, although its lefthand side only involves
constructors, its righthand side involves several defined functions needed to update the state, namely, the if-then-else op-
erator, the m > n predicate, and the “monus” operator on natural numbers _-_ used to decrease both the balance and
the pending debt. Fortunately, as already explained, the equations defining all these auxiliary functions are FVP. Thanks to
the R �→R�

�1,l,r transformation, all the lefthand- and righthand-sides of the transformed rules become constructor terms.
Specifically, the transformed rules for the above [w] rule are:

rl [w] : < bal: n + m + x pend: m overdraft: false >
msgs,withdraw(m + x)

=>
< bal: n pend: 0 overdraft: false > # msgs .

rl [w] : < bal: n + m pend: m + x overdraft: false >
msgs,withdraw(m)

=>

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 19
< bal: n pend: x overdraft: false > # msgs .

rl [w] : < bal: n pend: y overdraft: false >
msgs’,withdraw(1 + n + x)

=>
< bal: n pend: y overdraft: true > # msgs’ .

The relevant question about this example is: what is gained in translation? And the relevant answer is: very much, partic-
ularly for narrowing-based reachability analysis. The reason is that, before the transformation, each narrowing step would
take place by unifying a symbolic state with a rule’s lefthand side modulo E
 B . Now instead, the unification of symbolic
states with lefthand sides of rules takes place modulo B = B� , that is, just modulo ACU, which is much more efficient
that E
 B-unification by folding variant narrowing. In some sense, what has been achieved could be called a process of
total evaluation, where the defined functions appearing in righthand sides of rules have been completely evaluated away by
means of their constructor variants. Such total evaluation is what makes possible the reduction from E
 B-unification to
just ACU-unification.

5. Constrained constructor pattern predicates

This section addresses, and gives an answer to, the following crucial question:

What is a good language for state predicates?

The question is crucial because the degree of automation possible when reasoning symbolically about concurrent systems
will vary greatly depending on the answer one gives to it. The naive answer would of course be: “first-order logic.” But such
an answer, while seemingly sufficient,12 is not at all adequate in practice. It misses five key points: (i) the specific domain
on which we are reasoning, in this case the initial model TR , which is in fact the intended model specified by a generalized
rewrite theory R; (ii) the concrete needs of symbolic reasoning based on various symbolic procedures — for starters, think
just about equational unification — to increase automation; (iii) the additional advantages that derive not just from reasoning
about the initial model TR but, assuming R is or has been made ground coherent, about its isomorphic canonical model

CR; (iv) the even greater advantages that accrue from using the theory transformation R �→R�

�1,l,r , because the canonical

models CR and CR�

�1,l,r
coincide, but R�

�1,l,r is a much simpler rewrite theory than R in a way that substantially facilitates

automation; and (v) the fact that a well-chosen language can drastically reduce, or even eliminate, the explicit use of
quantifiers, since explicit handling of quantifiers can substantially increase reasoning complexity.

The first thing to do in the quest for an answer to the question about a suitable language for state predicates aware
of the above points (i)–(v) is to look at the model for states provided by CR�

�1,l,r
. It is of course the canonical term algebra

C�/�E,B . But this is only half of the story, because we also have the reduct identity: C�/�E ,B |� = C�/�E�,B�
. This often provides

an enormous simplification, because C�/�E�,B�
is typically a much simpler algebra than C�/�E,B . For example, in practical

applications the theory (�, E�
 B�) is almost always FVP; and often satisfiability of QF formulas in C�/�E�,B�
is decidable

[73]. In a very large number of practical applications we actually have E� = ∅; that is, the constructors � are free modulo
B� , so that C

�/�E,B |� = T�/B�
. Since this is the most common case in practice, and offers unique opportunities for efficient

symbolic reasoning, in the rest of this section I will focus on a language of state predicates for equational theories whose
constructors are free modulo B� . I refer to [91] for a generalization of the ideas presented here to the case of constructors
subtheories of the form (�, E�
 B�). However, even though I restrict myself to the case of free constructors modulo B� ,
the treatment I give here contains various new results and ideas beyond those in [91]. Although the emphasis in this paper
is on such new theoretical results and ideas, please note that all the logical operations on constrained constructor pattern
predicates proved to be computable in Section 5.1 as well as the subsumption check defined in Section 5.2 have already
been implemented in Maude and their implementation is used in an essential manner in the reachability logic theorem
prover described in [91].

Looking at the model of states T�/B�
, and viewing a language of state predicates as a precise way of specifying sets of

states suggests a preliminary answer to the following, more specialized question: what is a good, simple language for atomic
state predicates? I propose a simple, preliminary answer: constructor patterns! By a constructor pattern I just mean an �-term
u ∈ T�(X). The “pattern” description hints at the way it is interpreted as a predicate, that is, at its intended semantics, which
is the set:

�u� = {[uρ] ∈ T�/B�
| ρ ∈ [X→T�]} ⊆ T�/B�

.

12 This answer is actually insufficient. To begin with, it misses the need for inductive reasoning principles that need to be added to first-order logic in order
to have any fighting chance to reason effectively about the properties of a concurrent system.

20 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
In plain English, u is used as a pattern describing all (B�-equivalence classes of) ground instances uρ of u. Note that the
variables of a constructor pattern u range over T�/B�

, and are existentially quantified in an implicit manner (see point (v)
above). This existential quantification can be made explicit by the following, equivalent definition:

�u� = {[w] ∈ T�/B�
| ∃ρ ∈ [X→T�] s.t. w =B�

uρ}.
The second thing to ask ourselves when looking for a suitable language for state predicates is: are state predicates closed

under state transitions? To clarify this issue we should look at the rewrite rules in the transformed theory R�

�1,l,r . The rules in
this theory have the form l → r if ϕ with l, r ∈ T�(X)State . To make sense when talking about “closed under state transitions,”
we should think of each such rewrite rule as a “predicate transformer.” Therefore, what we are really asking is: is the set
of states [w] ∈ T�/B�

obtained by rewriting the states [uρ] ∈ �u� with the rule l → r if ϕ definable as a state predicate in
the language we are seeking? A partial answer can be given as follows. If the rule is unconditional, i.e., has the form l → r,
with l, r ∈ T�(X)State , the answer is yes! (more on this in Section 6.2). The problem, however, comes from the fact that the
condition ϕ in a rule l → r if ϕ in R�

�1,l,r can be an arbitrary QF �-formula. The full, correct answer is also yes! (more on
this in Section 6.2); but one has to generalize atomic state predicates from constructor patterns to constrained constructor
patterns of the form: u | ϕ , where u ∈ T�(X) is in �E�, B�-normal form, and ϕ is a QF �-formula. Their semantics is defined
as follows:

�u | ϕ� = {[uρ] ∈ T�/B�
| ρ ∈ [X→T�] ∧ T�/E
B |= ϕρ}.

Note that �u | ϕ� ⊆ �u� ⊆ T�/B�
. In fact, we can identify each constructor pattern u with the corresponding constrained

constructor pattern u | �.
Note, also, that it follows easily from the above semantic definition that for any constrained constructor pattern u | ϕ and

any variable renaming, i.e., any bijective and sort-preserving substitution σ such that for each x ∈ dom(σ), σ(x) ∈ X , we have
the set-theoretic equality �u | ϕ� = �u′ | ϕ′� for any u′ | ϕ′ such that (uσ | ϕσ) =B (u′ | ϕ′), where we view uσ | ϕσ and
u′ | ϕ′ as terms in an extended signature consisting of |-separated pairs of terms, whose first components are �-terms, and
whose second components are �-formulas.13 Since: (i) by B regular, =B is a variable-preserving equivalence relation, (ii)
variable renamings are closed under composition, inverses, and include the identity substitution, and (iii) if (u | ϕ) =B (v |ψ)

then (u | ϕ)σ =B (v | ψ)σ for any variable renaming σ , we can think more abstractly of a constrained constructor pattern
up to variable renaming and B-equality, i.e., up to the equivalence relation:

u | ϕ ≈B u′ | ϕ′ ⇔ (∃σ) s.t. σ variable renaming ∧ u′ | ϕ′ =B uσ | ϕσ .

We denote by [u | ϕ]≈B , or just [u | ϕ], the ≈B -equivalence class of u | ϕ . Therefore, since the semantics of constructor
pattern predicates is preserved by ≈B -equivalences, unless indicated otherwise, given two constructor patterns, say, u | ϕ
and v |ψ , we can always assume without loss of generality, that, up to variable renaming, we have vars(u | ϕ) ∩vars(v |ψ) = ∅.

We can now define constrained constructor pattern predicates and their semantics. Recall that X denotes the countably
infinite S-sorted set of variables used in the language of �-formulas.

Definition 9. Let (�, B�, ∅) be a constructor decomposition of (�, B, �E), and let State be a chosen top sort in a chosen
connected component of �. The set AtPatPred(�, �) of atomic predicates is the set of constrained constructor patterns of the
form u | ϕ with u ∈ T�(X)State and ϕ a QF �-formula. The algebra PatPred(�, �) of constrained constructor pattern predicates
is then the free {∨, ∧, ⊥}-algebra on the set of generators AtPatPred(�, �). The semantics � A� of a constrained constructor
pattern predicate A is defined as the unique {∨, ∧, ⊥}-homomorphism:

�_� : PatPred(�,�)→ P(T�/B�,State)

extending the already defined semantic function u | ϕ �→ �u | ϕ� for atomic predicates. That is, using capital letters
A, B, . . . , P , Q , . . ., and so on, as variables ranging over PatPred(�, �), �_� homomorphically maps any pattern predicate
A to a subset � A� ⊆ T�/B�,State as follows:

1. �⊥� = ∅.
2. � A ∨ B � = � A� ∪ � B �
3. � A ∧ B � = � A� ∩ � B �.

There is no need to add � and ⊥ as pattern predicates, since �x :State | x = x� = T�/B�
, and �x :State | x �= x� = ∅; but it

is useful to add ⊥.

13 The equivalence =B can be easily extended to the equivalence =B∪AC∨∪AC∧ , where AC∨ ∪AC∧ are the associativity and commutativity axioms for ∨ and
∧. In this way, formulas that are equal up to order and parentheses for logical connectives and B-equivalence of terms can be identified. Everything I will
say later about constrained constructor patterns modulo =B (resp. ≈B , see below), extends easily to =B∪AC∨∪AC∧ and ≈B∪AC∨∪AC∧ .

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 21
Note that the {∨, ∧, ⊥}-algebra P(T�/B�,State) is a distributive lattice. Note also that if T�/B�,State is countable, then
P(T�/B�,State) has the power of the continuum, so there is no hope whatsoever for the {∨, ∧, ⊥}-algebra P(T�/B�,State) to
be computable.

5.1. Making pattern predicate operations computable

However, for � a finite signature, (i) the set PatPred(�, �) is countable; and (ii) we can symbolically lift in an effective,
computable way all {∨, ∧, ⊥} operations on the image subalgebra �PatPred(�, �)� ⊆ P(T�/B�,State) of PatPred(�, �) un-
der the {∨, ∧, ⊥}-homomorphism �_� by performing them on the computable {∨, ∧, ⊥}-algebra ∨.PatPred(�, �)/ ≈B ∪Ax∨ ,
where ∨.PatPred(�, �)/ ≈B ∪Ax∨ denotes the free {∨, ⊥}-algebra modulo Ax∨ on the set AtPatPred(�, �)/ ≈B , which is the
quotient of the set AtPatPred(�, �) of atomic pattern predicates under the equivalence relation ≈B , and where ∨.Ax consists
of the following axioms: (i) the associativity and commutativity (AC∨) axioms for ∨, and (ii) the ∨-identity axiom for ⊥,
⊥ ∨ A = A. Since: (a) the equivalence relation ≈B on atomic predicates is trivially computable, (b) equality modulo ∨.AC
is also computable, and (c) the (oriented) equation ⊥ ∨ A = A is confluent and terminating modulo AC∨ , we can identify
∨.PatPred(�, �)/ ≈ ∪Ax∨ with the set of its normal forms modulo AC∨ by the (oriented) equation ⊥ ∨ A = A. This means
that the {∨, ⊥}-algebra ∨.PatPred(�, �)/ ≈∪Ax∨ is computable.14

To make ∨.PatPred(�, �)/ ≈B ∪Ax∨ into a computable {∨, ∧, ⊥}-algebra “all we need to do” is to define the function ∧
and show it is computable. Rather than doing this directly, it is easier to do it by stages.

Stage 1. Define the {∨, ∧, ⊥}-algebra PatPred(�, �)/ ≈B ∪Ax, which, by definition, is the free {∨, ∧, ⊥}-algebra modulo Ax
on the set AtPatPred(�, �)/ ≈B , and where Ax adds to Ax∨ the following additional axioms: (i) the associativity and commu-
tativity (AC∧) axioms for ∧, (ii) the axiom ⊥ ∧ A =⊥, and (iii) the distributivity axiom A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C). The
algebra PatPred(�, �)/ ≈B ∪Ax is computable for the following reasons: (a) ≈B is trivially computable, (b) equality modulo
AC∨∪ AC∧ is also computable, and (c) the equations ⊥ ∨ A = A, ⊥ ∧ A =⊥, and A ∧ (B ∨C) = (A ∧ B) ∨ (A ∧C) are confluent
and terminating modulo AC∨ ∪ AC∧ . Therefore, PatPred(�, �)/ ≈B ∪Ax is like a canonical term algebra, except that instead
of using variables to generate it we use ≈B -equivalence classes of atomic predicates as generators. Note, furthermore, that
the normal form modulo ∨.AC ∪ ∧.AC under these equations of any pattern predicate is a disjunctive normal form, i.e., it is
either ⊥, or a disjunction of (one or more) conjunctions of atomic predicates.

Stage 2. All we have left to do is to define a computable function

_∧ _ : (∨.PatPred(�,�)/≈B ∪Ax∨)2 →∨.PatPred(�,�)/≈B ∪Ax∨.

This computable function is defined as follows:

(Stage 2.a). We map each ([A], [B]) ∈ (∨.PatPred(�, �)/ ≈B ∪Ax∨)2 to the disjunctive normal form [A ∧ B]dnf of [A ∧ B]
modulo AC∨ ∪ AC∧ in PatPred(�, �)/ ≈B ∪Ax. This defines a computable function:

_∧1 _ : (∨.PatPred(�,�)/≈B ∪Ax∨)2 → PatPred(�,�)/≈B ∪Ax

where [A] ∧1 [B] = [A ∧ B]dnf .

(Stage 2.b). We then define a second function:

unif : PatPred(�,�)/≈B ∪Ax→∨.PatPred(�,�)/≈B ∪Ax∨
as follows: unif (⊥) =⊥. In all other cases we need to define the image by unif of a disjunctive normal form

∨
i∈I

∧
j∈ J i

[ui j | ϕi j]

modulo AC∨ ∪ AC∧ with I and each J i non-empty index sets. But, since we define unif to be disjunction-preserving, all
we have left to do is to define for each k ∈ I the image by unif of a conjunction of (≈B -equivalence classes of) atomic
predicates

∧
j∈ Jk
[uk j | ϕk j] modulo AC∧ . First of all, if {[uk j | ϕk j] | j ∈ Jk} is a singleton set of the form {[uk | ϕk]}, then

unif (
∧

j∈ Jk
[uk j | ϕk j]) = [uk | ϕk]. Otherwise, {[uk j | ϕk j] | j ∈ Jk} = {[uk1 | ϕk1], . . . , [ukn | ϕkn]}, with n > 1, and where we can

assume without loss of generality that the representatives of the ≈B -equivalence classes are such that for 1 ≤ l < r ≤ n we
have: vars(ukl | ϕkl) ∩ vars(ukr | ϕkr) = ∅. Then we define:

14 By definition, a �-algebra A is called computable iff: (i) its elements can be effectively specified in a finitary way; (ii) equality between elements is
decidable; and (iii) for each f ∈ � the function f A is recursive. For a precise definition see, e.g., [12,74]. Alternatively, one can formalize the informal
description (i)–(iii) just given using Shoenfield’s notion of a space and of a recursive (also called computable) function between two spaces (see [89], and
for a brief introduction Section 3.2 of [69]). In Shoenfield’s terms we just say that A is a space, and for each f ∈ � the function f A is recursive. The ten
thousand feet high description is even simpler: A is computable if its elements can be implemented in a computer as a data type, and its operations can
be programmed as terminating functions operating on such a data type.

22 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
unif (
∧
j∈ Jk

[uk j | ϕk j])=
∨

α∈Unif B�
({uk1 ,...,ukn })

[(uk1 |
∧

1≤l≤n

ϕkl)α].

Note that such a definition does not depend on the choice of variable-disjoint representatives {uk1 , . . . , ukn }, and therefore
defines a function unif . This is because, for any other such choice, say, {u′k1

, . . . , u′kn
}, there will be a variable renaming

σ such that Unif B�
({uk1 , . . . , ukn }) = {σα | α ∈ Unif B�

({uk1 , . . . , ukn })}. After these two steps we can define our desired
computable function _∧ _ as the function composition _∧ _= unif ◦ _∧1 _. That is, for each ([A], [B]) ∈ (∨.PatPred(�, �)/ ≈B

∪Ax∨)2 we define [A] ∧ [B] = unif ([A ∧ B]dnf). The key semantic property satisfied by this definition of conjunction is:

Proposition 2. Under the variable disjointness assumption that, for 1 ≤ l < r ≤ n, vars(ukl | ϕkl) ∩ vars(ukr | ϕkr) = ∅, the following
set equality holds:

⋂
1≤l≤n

�ukl | ϕkl � =
⋃

α∈Unif B�
({uk1 ,...,ukn })

�(uk1 |
∧

1≤l≤n

ϕkl)α�.

This, plus the fact that the {∨, ∧, ⊥}-homomorphism �_� : PatPred(�, �) →P(T�/B�,State) preserves all ≈B ∪Ax-equalities,
i.e., that A =≈B∪Ax B implies � A� = � B �, means that the {∨, ∧, ⊥}-homomorphism �_� : PatPred(�, �) →P(T�/B�,State) fac-
tors as the composition of {∨, ∧, ⊥}-homomorphisms:

PatPred(�,�)
[_]−→∨.PatPred(�,�)/≈B ∪Ax∨

�_�−→ P(T�/B�,State)

where, by definition, for each [A] ∈∨.PatPred(�, �)/ ≈B ∪Ax∨ , �[A]� = � A�, and [_] is the unique {∨, ∧, ⊥}-homomorphism
induced by the composition:

AtPatPred(�,�)
[_]−→ AtPatPred(�,�)/≈B ↪→∨.PatPred(�,�)/≈B ∪Ax∨

where AtPatPred(�, �) [_]−→ AtPatPred(�, �)/ ≈B is just the quotient map to ≈B -equivalence classes, and ↪→ is set-theoretic
inclusion.

It is this second {∨, ∧, ⊥}-homomorphism ∨.PatPred(�, �)/ ≈B ∪Ax∨
�_�−→ P(T�/B�,State) that I have called the lifting of

the set-theoretic operations in the image {∨, ∧, ⊥}-subalgebra �PatPred(�, �)� ⊆P(T�/B�,State) to corresponding computable
symbolic operations in the algebra ∨.PatPred(�, �)/ ≈B ∪Ax∨ .

5.2. Some basic properties and pattern predicate subsumption

The proof of the following basic properties about atomic pattern predicates and pattern predicates follows easily from
their basic definitions and is left to the reader.

Lemma 2. The following results hold for atomic pattern predicates and pattern predicates:

1. �u | ϕ ∨ψ � = �u | ϕ� ∪ �u |ψ �.
2. Given QF �-formulas ϕ, ψ , if T�/E∪B |= ϕ⇒ψ , then �u | ϕ� ⊆ �u |ψ �.
3. For each �-substitution α and pattern predicate A, � Aα� ⊆ � A�.
4. Call {u1, . . . , uk} ⊆ T�(X)s a pattern set for sort s modulo B� iff T�/B�,s =⋃

1≤i≤k{[uiρ] | ρ ∈ [X→T�]}. Then, if in the atomic
predicate u | ϕ variable x :s of sort s appears in u we have,

�u | ϕ� =
⋃

1≤i≤k

�(u | ϕ){x:s �→ ui}�

where all variables in the pattern set are fresh variables not appearing in u | ϕ .

Note that (1) in the above lemma allows assuming without loss of generality that in an atomic pattern predicate u | ϕ ,
the formula ϕ is a conjunction of literals. This is so because, up to Boolean equivalence, we may assume ϕ in disjunctive
normal form ϕ = ϕ1 ∨ . . . ∨ ϕn and can then apply (1) to decompose �u | ϕ� into the union

⋃
1≤i≤n �u | ϕi �. This is quite

useful because, as we shall see in Section 6, symbolic methods often transform a constructor pattern u | ϕ into another
constructor pattern (v | ϕ ∧ ψ)α for some �-substitution α. But if ϕ and ψ are conjunctions of literals, then so is ϕ ∧ ψ ,
and this can make it easier to perform other symbolic operations.

Pattern Predicate Subsumption. Given atomic pattern predicates u | ϕ and v | ψ , the subsumption relation u | ϕ $B�
v | ψ

(meaning that u | ϕ is less general than v | ψ , which therefore subsumes u | ϕ) holds by definition iff there is an
�-substitution β such that: (i) u =B�

vβ , and (ii) T�/E
E |= ϕ⇒ψβ . Unless we are within a decidable fragment for validity

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 23
of QF formulas in T�/E
B , checking (ii) is in general an inductive theorem proving problem and therefore undecidable; but
there are various syntactic and/or simplification-based methods that can verify (ii) in many practical cases.

More generally, given pattern predicates
∨

i∈I ui | ϕi and
∨

j∈ J v j |ψ j the subsumption relation
∨

i∈I ui | ϕi $B�

∨
j∈ J v j |

ψ j holds iff for each i ∈ I there is a j ∈ J such that ui | ϕi $B�
v j | ψ j . Note that if A $B�

B , then it follows immediately
from (2)–(3) in Lemma 2 that we have the set containment � A� ⊆ � B �; but the converse does not follow: we may have
� A� ⊆ � B � without having A $B�

B . In fact, (4) in Lemma 2 provides an easy counterexample taking A ≡ u | ϕ and B ≡∨
1≤i≤k(u | ϕ){x :s �→ ui}.
Often, the substitution β witnessing a subsumption u | ϕ $B�

v |ψ can easily be found using a B�-matching algorithm;
but this is not always the case: when a B�-matching substitution α is such that u =B�

vα but the set of variables Y =
vars(ψα) \ vars(ϕ) is non-empty, then α will usually not be good enough to witness the subsumption u | ϕ $B�

v | ψ . We
may need to more carefully choose a substitution β of the form β = α
 γ , where γ has domain Y and range contained
in vars(ϕ) to be able to show that T�/E
B |= ϕ ⇒ ψβ . This need for finding a witness β more subtle than just a simple
B�-matching substitution can be illustrated with an example.

Example 8. Consider the unsorted signature � = {0, 1, _+ _, _ ∗ _} with � = {0, 1, _+ _}, B� the associativity-commutativity
and identity 0 for _+ _, B obtained by adding to B� the associativity-commutativity for _ ∗ _, and E the equations x ∗ 0 = 0,
x ∗ 1 = x, and x ∗ (y + z) = (x ∗ y) + (x ∗ z). Then, to prove the pattern subsumption:

y + y + y + y | y �= 0$B�
x+ x | x=m ∗ n∧m �= 0∧ n �= 0

the obvious B�-matching substitution α = {x �→ y + y} is not good enough due to the “dangling variables” Y = {n, m}. But
we can extend α to the substitution β = {x �→ y + y, m �→ 1 + 1, n �→ y}, which allows us to prove T�/E
B |= y �= 0 ⇒
y + y = (1 + 1) ∗ y ∧ 1 + 1 �= 0 ∧ y �= 0, since the first conjunct in the conclusion follows by E, B-simplification, the last
conjunct follows from the hypothesis, and 1 + 1 �= 0 holds in T�/B�

because the equation 1 + 1 = 0 has no B�-unifiers.

5.3. Relaxing the freeness modulo B� requirement

There are two ways in which the requirement that the constructor subspecification (�, E� ∪ B�) ⊆ (�, E ∪ B) has free
constructors modulo axioms B� , i.e., that E� = ∅, can be relaxed. The first, adopted in [91], is to assume that (�, E� ∪
B�) is an FVP theory. This assumption is very natural and holds in practice for an overwhelming number of constructor
specifications. For a simple example, consider sets (whose elements belong to a subsort), with a union operator _ ∪ _ and
empty set ∅, where B� are the associative-commutative axioms for _∪ _, and E� = {S ∪ S = S, S ∪ ∅ = S}, which is FVP. All
results presented so far extend naturally to the FVP case. The semantics of an atomic pattern predicate u | ϕ also extends
naturally as follows:

�u | ϕ� = {[(uρ)!E�,B�
] ∈ C�/E�,B�

| ρ ∈ [X→T�] ∧ T�/E
B |= ϕρ}.
All operations on pattern predicates remain computable. The reason for this is that, since (�, E� ∪ B�) is FVP, we obtain
finitary unification and matching algorithms modulo E� ∪ B� that can be used, respectively, to compute pattern predicate
conjunctions A ∧ B and pattern predicate subsumptions A $E�∪B�

B .
A second way in which the need for relaxing the freeness modulo B� requirement arises is because we may have

a subsignature �0 ⊆ � such that satisfiability in T�/E∪B |�0 of �0-formulas15 in some class C is decidable. Consider, for
example, the case of the set constructors mentioned above, where the ground constructor terms in the subsort of elements
are the rational numbers, and C is the class of linear arithmetic formulas. In many such cases the constructor subsignature
will typically have the form: (�1
�0, E�1
 E�0
 B�1
 B�0), where �1 is the signature of “standard” constructors, so
that it is very reasonable to assume that (�1, E�1
 B�1) is FVP, and (�0, E�0
 B�0) is the signature of constructors for
T�/E∪B |�0 . By the way, there is no need to assume that (�0, E�0
 B�0) is a finite specification. In some cases �0 may
contain all canonical representations of elements of T�/E∪B |�0 as constants, and E�0
 B�0 may be the so-called diagram
(see, e.g., [62]) of T�/E∪B |�0 . To get real traction out of the decidable satisfiability of C-formulas in T�/E∪B |�0 , a very
useful property is that for any �1-substitution θ and formula ϕ ∈ C we have ϕθ ∈ C . This can be achieved by making
some reasonable assumptions on the sorts S0 of �0 and on �1 and �0, as done in, e.g., [87,22]. Specifically, it is enough
to assume that: (i) �0 (and therefore �0) is many-sorted, (ii) the sorts S0 are minimal elements in the poset (S, ≤) of
sorts of �, which is also that of �1, and (iii) all �1
 �0-terms having a sort on S0 are �0-terms. A great conceptual
simplification can then be achieved by reasoning about constructor �1
 �0-terms using only �1-patterns. This can be
done by �0-abstracting a �1
�0-term u as a pair (u◦, α�0

u), where u◦ is a �1-term and α�0
u is a substitution such that

u = u◦α�0
u . Let me briefly explain the (u◦, α�0

u) construction, spelled out also in [87,22]. Any �1
 �0-term u is always
of the form u = u[v1, . . . , vn]p1,...,pn , where p1, . . . , pn are the maximal positions in u where terms having a sort in S0

15 As explained in, e.g., [73], there is no need to distinguish between function and predicate symbols: by adding an extra sort Pred of predicates, any
model of a first-order logic theory can be naturally understood as a �0-algebra for some �0.

24 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
(and therefore a �0-term) appear, and the v1, . . . , vn are the biggest-possible �0-subterms in question. Then we define the
�0-abstraction pair (u◦, α�0

u) as follows. u◦ = u[x1, . . . , xn]p1,...,pn , where, if vi is a variable of sort s0 ∈ S0, then xi ≡ vi , and
otherwise xi is a fresh new variable with same sort as vi , and where α�0

u is the substitution α�0
u = {x1 �→ v1, . . . , xn �→ vn}

and we denote by α̂�0
u the associated conjunction α̂�0

u ≡ x1 = v1 ∧ . . .∧ xn = vn .
The key question now is: when the constructor subspecification of (�, E ∪ B) has the form (�1
�0, E�1
 E�0
 B�1

B�0) and satisfies the assumptions and sort restrictions mentioned above, what is a good language of state predicates for
(�, E ∪ B) and chosen sort State? The obvious answer is: the pattern predicates that can be built out of atomic pattern
predicates of the form u | ϕ with u a �1-term of sort State and ϕ a QF �-formula. The semantics �u | ϕ� of u | ϕ is exactly
as the one given above for the FVP case, in the understanding that now (�, E�
 B�) = (�1
�0, E�1
 E�0
 B�1
 B�0).
The remarkable fact is that the algebra of pattern predicates is still computable. This is because a conjunction u | ϕ ∧ v | ψ
can be computed by variant E�1
 B�1 -unification, and the subsumption relation has the form A $E�1∪B�1

B . This is very
nice but not entirely obvious, since, to agree with set intersection in its semantic interpretation, a conjunction u | ϕ ∧ v | ψ
should be computed by E�
 B�-unification, which need not be finitary at all. The recent work of S. Ciobâcă, A. Arusoaie,
and D. Lucanu [22] saves the day. Under the above assumptions on the decomposition of the constructor subspecification
they provide a E�
 B�-unification algorithm which has a very simple description and therefore I include it here. Given two
�-terms u and v a complete set of constrained E�
 B�-unifiers for the equation u = v is obtained as follows: (i) we first
compute their �0-abstractions (u◦, α�0

u) and (v◦, α�0
v), and then (ii) the set

{(β | (α̂�0
u ∧ α̂

�0
v)β) | β ∈ Unif E�1
B�1

(u◦ = v◦)}

provides a complete set of constrained E�
 B�-unifiers, were we can of course discard those unifiers such that (α̂�0
u ∧

α̂
�0
v)α is unsatisfiable in T�/E∪B |�0 . The key observation is that when u and v are �1-terms, their E�
 B�-unifiers coincide

with their E�1
 B�1 -unifiers. This is because then their �0-abstractions have the form (u, id) and (v, id), with id the
identity substitution, making the constraints (îd∧ îd)β trivial.

6. Symbolic methods for generalized rewrite theories

This section presents sound and complete symbolic methods for reasoning about universal and existential reachability
formulas in a generalized rewrite theory, and also for verifying invariants.

6.1. Universal reachability by generalized rewriting

Coherence of a generalized rewrite theory, plus absence of extra variables in the righthand sides and conditions of
rules, plus existence of a B-matching algorithm, plus decidability of the QF formulas instantiating rule conditions, provide
a semi-decision procedure based on symbolic execution by generalized rewriting for proving all valid universal reachability
formulas of the form:

(†) R |= (∀Y) t →∗ t′

where Y are the variables appearing in t, t′ . Recall that the models of the generalized rewrite theory R are precisely the
algebraic transition systems in the category TransR . By definition, (†) holds, iff for each (A, →A) ∈ TransR (A, →A) |=
(∀Y) t →∗ t′ , which, again by definition, means that for each α ∈ [X→A], with X ⊃ Y having countably many variables for
each sort, we have tα→∗

A t′α, where →∗
A is the reflexive-transitive closure of the transition relation →A .

The theorem below is very general. It reduces validity of universal reachability formulas to various rewrite relations on
the canonical model CR(X) and on terms in T�(X). The statement of Theorem 8 does not require the absence of extra
variables in the righthand sides and conditions of rules or, beyond coherence requirements, any of the other symbolic
executability requirements mentioned above. The easy to automate case obtained by imposing those extra requirements is
considered in Corollary 1.

Theorem 8. Let R = (�, E
 B, R, T , φ) be a generalized rewrite theory such that: (i) (�, B, �E) is a convergent, strongly deterministic
rewrite theory; (ii) the rules R are strictly B-coherent; and (iii) the rewrite theory R is coherent. Then the following are equivalent:

1. R |= (∀Y) t →∗ t′
2. [t!�E,B]B →∗

CR(X)
[t′!�E,B]B

3. t!�E,B →∗
R,B;!�E,B

w and w =B t′!�E,B .

where, by definition, u →R,B;!�E,B
v iff there is a �-term v ′ such that u →R,B v ′ and v = v ′!�E,B .

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 25
Corollary 1. Under the assumptions of Theorem 8, plus the further assumptions that: (iv) B has a matching algorithm yielding a finite
and complete set of B-matching substitutions16 for each matching problem; (v) each rule l → r if ϕ in R is such that vars(r) ∪
vars(ϕ) ⊆ vars(l); (vi) there is a subsignature �0 ⊆� such that T -validity of QF �0-formulas is decidable, and for each rule l → r if ϕ
and �-substitution θ , ϕθ is a QF �0-formula; and (vii) the set R of rules is finite, breadth-first search from the term t!�E,B with the
computable relation →R,B;!�E,B

to find a term w such that t!�E,B →∗
R,B;!�E,B

w and w =B t′!�E,B provides a semi-decision procedure for
proving the R-validity of the universal reachability formula (∀Y) t→∗ t′ .

Note that the additional assumptions (iv)–(vii) in Corollary 1 are important to automate the relation →R,B;!�E,B
. In par-

ticular, assumption (v) is important because otherwise, we would not be able to perform a step u →R,B;!�E,B
v based on a

substitution β B-matching a subterm u|p against the lefthand side l of a rule in R . This is because we would have to guess
the values of β on the extra variables in the rule’s righthand side and condition to be able to check whether a rewrite step
with →R,B;!�E,B

can be performed, and there may be an infinite number of such guesses. Furthermore, even assuming (v),
assumption (vi) is needed for the condition’s check to be effective. As we shall see in Section 6.2, assumption (v) is not
needed at all when we are instead interested in proving the R-validity of existential formulas of the form (∃Y) t →∗ t′ .

Example 9. Consider the sorting theory R = (�, E
 B, R, T , φ) of Example 4, where R are the strictly B-coherent rules
obtained by adding to the original rule in R its B-extensions (1)–(3) in Example 4. Recall that R is also coherent. It is easy
to check that, furthermore, it satisfies all other conditions (iv)–(vii) in Corollary 1. In particular, condition (vi) holds for �0

the restriction of � to the sorts Nat and Bool, since the equational theory (�, E
 B) is FVP, and the constructor subsignature
for the sorts Nat and Bool is OS-compact [73], yielding a decision procedure for T -satisfiability (and therefore T -validity)
of QF �0-formulas by variant satisfiability [73]. Although not essential for our purposes, it is also not hard to see that the
relation →R,B;!�E,B

is terminating. We can then prove, for example, the R-validity of the universal formula:

(∀{n,m,k}) n+m+ k+ 1+ 1;n+m+ 1;n→∗ n;n+m+ 1;n+m+ k+ 1+ 1

where the variables n, m, k have sort Nat, by computing all terminating sequences of symbolic executions with the relation
→R,B;!�E,B

from the term n +m + k + 1 + 1; n +m + 1; m. There are several such sequences. One of them is the sequence:

n+m+ k+ 1+ 1;n+m+ 1;n→R,B;!�E,B
n+m+ k+ 1+ 1;n;n+m+ 1→R,B;!�E,B

n;n+m+ k+ 1+ 1;n+m+ 1→R,B;!�E,B
n;n+m+ 1;n+m+ k+ 1+ 1.

6.2. Narrowing-based existential reachability analysis

The existential reachability problem, which in its simplest possible form can be posed, for given topmost generalized
rewrite theory R and state terms t, t′ , as checking the satisfaction of17:

TR |= ∃(t →∗ t′)
where ∃(t →∗ t′) denotes the existential closure of the formula t →∗ t′ , can be answered, for any ground-coherent and
topmost generalized rewrite theory R = (�, E
 B, R, T , φ) with (�, B, �E) convergent and strongly deterministic, and B
having a unification algorithm. In plain English, we want to be able to prove that there is a ground substitution ρ such that
[tρ]E
B →∗

R [t′ρ]E
B whenever this is the case for the given t, t′ . Furthermore, we want to have a constructive proof that
can exhibit such a ρ . However, in practice it is quite hard, and in general quite hopeless, to try to solve this problem directly
on R itself, unless R satisfies very special and restrictive properties. Briefly put, this is because, although in principle
narrowing with the rules R modulo E
 B provides a sound and complete answer to existential reachability (see [68] for R
unconditional), each narrowing step requires performing E
 B-unification, which is possible by convergence: (i) under the
strong determinism assumption using the unification with constraints technique in [20], and (ii) for unconditional oriented
equations �E it can be performed in Maude by variant unification (without the FVP assumption). But, unfortunately, in
general E
 B-unification is both infinitary and undecidable. This means that when narrowing a term with rules R modulo
E
 B we may: (i) experience infinite branching; (ii) loop forever without getting any E
 B-unifiers; and (iii) experience
steep performance barriers to compute each E
 B-unifier, making the overall prospect quite dim.

One of the key goals of this paper is to solve this problem for the same topmost generalized rewrite theory R under
mild assumptions, but to do so in a much simpler and much more efficient way, requiring only B�-unification in narrowing
steps, by posing it on the semantically equivalent, transformed rewrite theory R�

�1,l,r , under the mild assumptions given

16 By definition, a �-term t B-matches the �-term u with matching substitution α iff t =B uα. A set M of substitutions B-matching t against u is complete
iff for any substitution β that B-matches t against u there is a substitution α ∈ M such that for each variable x appearing in u we have β(x) =B α(x).
17 Thanks to the initiality of TR , TR |= ∃(t →∗ t′) holds iff R |= ∃(t →∗ t′) holds. That is, existential reachability is just the satisfaction of the existential

closure of an atomic formula (or of a conjunction of atomic formulas [68]) in the theory R.

26 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
in Section 4.3, plus the further assumption that the constructors � are free18 modulo axioms B� . Furthermore, using the
language of pattern predicates of Section 5, and the fact that for R ground coherent we have TR ∼= CR = CR�

�1,l,r
, we can

now pose on R considerably more sophisticated existential reachability problems of the form:

TR |= ∃(A →∗ B)

where A and B are pattern predicates. And we can then use the transformed theory R�

�1,l,r to solve them in a much more
efficient and simpler way. Rather than delving directly into narrowing technicalities, I first take a more abstract, and I think
conceptually more enlightening, tack based on predicate transformers (in the classical sense, see, e.g., [32]). Narrowing will
then appear as a natural implementation of such predicate transformers.

Rewrite Rules as Predicate Transformers. Let R�

�1,l,r be the transformed theory of a ground coherent, topmost generalized
rewrite theory R defined in Section 4.3. Recall that TR ∼= CR = CR�

�1,l,r
, and that for states, by the assumption that the

constructors � are free modulo axioms B� , we have: C
�/�E,B |� = T�/B�

. Therefore, we have, P(C�/E,B,State) =P(T�/B�,State).
This means that the rewrite relation →CR is a binary relation →CR⊆ P(T�/B�,State)

2. But since: (i) the functor P : Set→
Set is the (functor part of) the monad of upper (

∨
) complete semilattices (see, e.g., [67]), and (ii) the category of relations

and relation composition is isomorphic to the Kleisli category (see, e.g., [66,67]) for such a monad when we view a relation
Q ⊆ A × B as a function Q̃ ≡ λa ∈ A. {b ∈ B | (a, b) ∈ Q } ∈ P(B), the function →̃CR : T�/B�,State → P(T�/B�,State) uniquely
extends to an upper complete semilattice homomorphism which, to simplify notation, I denote by:

R! : P(T�/B�,State)→ P(T�/B�,State)

i.e., R! ≡ λV ∈ P(T�/B�,State). {[w] | ∃[v] ∈ V s.t. [v] →CR [w]} ∈ P(T�/B�,State). Let us call R! the predicate transformer
associated to the generalized rewrite theory R. In particular, R! is a {∨, ⊥}-endomorphism of P(T�/B�,State). Of course,
P(T�/B�,State) will typically have the power of the continuum, so any talk of making the predicate transformer R! com-
putable is utter nonsense. But recall that, if we restrict ourselves to the image subalgebra �PatPred(�, �)� ⊆P(T�/B�,State),
the prospects for a computable, symbolic representation of the predicate transformer R! look much brighter.

Let me put the question more precisely. We have already lifted the {∨, ∧, ⊥} operations on �PatPred(�, �)� to sym-
bolic operations in the computable {∨, ∧, ⊥}-algebra ∨.PatPred(�, �)/ ≈B ∪Ax∨ by means of the {∨, ∧, ⊥}-homomorphism

∨.PatPred(�, �)/ ≈B ∪Ax∨
�_�−→ P(T�/B�,State). Can we likewise lift the predicate transformer R! to a computable, symbolic

version as a {∨, ⊥}-endomorphism

R! : ∨.PatPred(�,�)/≈B ∪Ax∨ →∨.PatPred(�,�)/≈B ∪Ax∨
in such a way that we have the identity �_�; R! = R!; �_�? The answer is yes! It relies in an essential manner on the
R �→R�

�1,l,r transformation.
So, let us do it! First of all, recall that: (i) ∨.PatPred(�, �)/ ≈B ∪Ax∨ is the free {∨, ⊥}-algebra modulo Ax∨

on the set AtPatPred(�, �)/ ≈B , and (ii) P(T�/B�,State) trivially satisfies the axioms Ax∨ . Therefore, since �_� is a
{∨, ∧, ⊥}-homomorphism, and in particular a {∨, ⊥}-homomorphism, by the freeness of ∨.PatPred(�, �)/ ≈B ∪Ax∨ , all we
need to do to define the computable, symbolic predicate transformer R! and prove the equality �_�; R! = R!; �_� is: (a)
to define a computable function R◦! : AtPatPred(�, �)/ ≈B→∨.PatPred(�, �)/ ≈B ∪Ax∨ (which uniquely extends to a com-
putable, symbolic {∨, ⊥}-endomorphism R!); and (b) check that �_�|AtPatPred(�,�)/≈B ; R! = R◦!; �_�.

It is in the definition of the computable function R◦! that the transformation R �→R�

�1,l,r becomes crucial. Recall that
the rewrite rules in R�

�1,l,r have the form l → r if ϕ , with l, r ∈ T�(X)State . To be able to name each of these rules, I give
to each of them a different label γ ∈ �, and display them as follows: γ : l → r if ϕ . Rather than defining the function R◦!
directly, I define, for each rule γ : l → r if ϕ in R�

�1,l,r , a function γ : AtPatPred(�, �)/ ≈B→∨.PatPred(�, �)/ ≈B ∪Ax∨ . Then
R◦! is defined as the function: R◦! ≡ λ[v | ψ] ∈ AtPatPred(�, �)/ ≈B .

∨
γ∈� γ ([v | ψ]) ∈ ∨.PatPred(�, �)/ ≈B ∪Ax∨ . Here is

the definition of the function γ for a rule γ : l → r if ϕ in R�
�1,l,r :

γ ≡ λ[v |ψ].
∨

α∈Unif B�
(l=v)

[(r |ψ ∧ ϕ)α],

where w.l.o.g. we assume that v | ψ and l → r if ϕ share no variables. All we have left to do to get our desired computable
predicate transformer R! is to prove:

18 As explained in Section 5.3, all this generalizes to the case of constructor theories (�, E� ∪ B�) where E� ∪ B� is FVP, or even to the more general
case of the constructor theories (�, E�
 B�) = (�1
�0, E�1
 E�0
 B�1
 B�0) of Section 5.3, since both have finitary E� ∪ B�-unification algorithms.
To simplify the exposition I treat here the very common case of free constructors modulo B� and, also but implicitly, the case where (�, E�
 B�) =
(�1
 �0, E�0
 B�1
 B�0). In this second case, the only assumptions needed are that: (i) in the (transformed) rewrite rules l → r if ϕ , l and r are
�1-terms; and (ii), as explained in Section 5.3, atomic pattern predicates always have the form u | ϕ with u a �1-term.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 27
Lemma 3. For each [v |ψ] ∈ AtPatPred(�, �)/ ≈B , we have the set equality R!�v |ψ � = � R◦!([v |ψ])�.

Constrained Narrowing in R�

�1,l,r . Let us now come back to our original goal. Assume, as before, a coherent topmost rewrite

theory R with free constructors modulo B� , so that C�/�E,B |� = T�/B�
. How can we use the transformation R �→R�

�1,l,r to
solve reachability problems of the form TR |= ∃(A →∗ B), with A and B pattern predicates? Of course, TR |= ∃(A →∗ B),
where we assume vars(A) ∩ vars(B) = ∅, just means that there are [v] ∈ � A� and [w] ∈ � B � such that [v] →∗

CR
[w]. I claim

that, in rough outline, we already know the answer! Indeed:

1. Since we have defined _ ∧ _ in a computable way in terms of _ ∨ _, we may assume w.l.o.g. that A and B are finite
disjunctions of atomic pattern predicates. In particular, A ≡ u1 | ϕ1 ∨ . . .∨ un | ϕn .

2. By the very definition of the predicate transformer R! : P(T�/B�,State) → P(T�/B�,State), TR |= ∃(A →∗ B) holds iff
there is a natural number n such that R!n(� A�) ∩ � B � �= ∅, where R!0 is the identity function on P(T�/B�,State), and
R!n+1 = R!n; R!.

3. But we can use the computable predicate transformer R! : ∨.PatPred(�, �)/ ≈B ∪Ax∨ → ∨.PatPred(�, �)/ ≈B ∪Ax∨ to
answer this reachability problem symbolically: it will have a positive answer iff there is a natural number n such that
R!n([A]) ∧ [B] denotes a non-empty set. Since R!n([A]) ∧ [B] will always symbolically evaluate to either ⊥ or to a finite
disjunction of the form v1 | ψ1 ∨ . . . ∨ vm | ψm , m ≥ 1, it is all a matter of checking whether we do not get ⊥ as an
answer and there is a j, 1 ≤ j ≤m, such that �v j |ψ j � �= ∅.

4. The hardness of answering a question of the form �v j |ψ j � �= ∅ will depend on the specific atomic predicate v j |ψ j and
on the background theory T . The best possibility is when T can answer whether ϕ is satisfiable in the initial algebra
T�/E
B , but this may not always be decidable.

5. Assuming that we do find a j such that �v j | ψ j � �= ∅, then we do know that there is a concrete rewrite sequence of
length n in CR�

�1,l,r
witnessing that TR |= ∃(A →∗ B) holds; but of course we would like to have an easy way to exhibit

such a witness rewrite sequence.

Although points (1)–(5) give us a high-level answer to how to solve symbolic reachability problems under mild as-
sumptions on a topmost R using the predicate transformer R!, several issues remain. The most basic one is how to best
implement R!. Of course, since R! is a {∨, ⊥}-endomorphism, it is enough for us to implement R◦!. Recall that, by definition,
R◦! is just the function:

R◦! ≡ λ[v |ψ].
∨

l→r if ϕ ∈ R�
�1,l,r

∨
α∈Unif B�

(l=v)

[(r |ψ ∧ ϕ)α].

This definition wears a very direct answer to the implementation question on its sleeve: by constrained narrowing!

Definition 10. The following narrowing relations can be defined:

1. Let (�, B, R, φ) be a standard rewrite theory where B are regular and linear axioms having a B-unification algorithm
and R is a set of strictly B-coherent rewrite rules. The narrowing modulo B relation between two terms u, v ∈ T�(X),
denoted u �R,B v , or u α�R,B v , holds iff there exists a non-frozen position p in u, a rule l → r in R — which we assume
renamed if necessary to ensure vars(t) ∩ vars(l → r) = ∅ — and a B-unifier α ∈ Unif B(l = u|p) such that v = (u[r]p)α.

2. Let R = (�, B, R, T , φ) be a generalized rewrite theory where B are regular and linear axioms having a B-unification
algorithm and R is a set of strictly B-coherent rewrite rules. The constrained narrowing modulo B relation between
two constrained terms u | ψ and v | χ — where u, v ∈ T�(X), and ψ, χ ∈ QFForm(�) — denoted u | ψ �R,B v | χ , or
u |ψ α�R,B v | χ , holds iff there exists a non-frozen position p in u, a rule l → r if ϕ in R — which we assume renamed
if necessary to ensure vars(u | ψ) ∩ vars(l → r if ϕ) = ∅ — and a B-unifier α ∈ Unif B(l = u|p) such that v | χ = (u[r]p |
ψ ∧ ϕ)α.

3. Let R = (�, E
 B, R, T , φ) be a topmost rewrite theory where (�, B, �E) is convergent and strongly deterministic, has
a constructor subtheory (�, B�, ∅) with B� regular and linear axioms having a B�-unification algorithm, and satisfies
the additional requirements in Section 4.3, so that R�

�1,l,r is its ground semantically equivalent transformed theory. The
constrained narrowing modulo B� relation between two constrained constructor patterns u | ψ and v | χ , where u, v ∈
T�(X)State , denoted u |ψ �R�

�1,l,r ,B�
v | χ , or u |ψ α�R�

�1,l,r ,B�
v | χ , holds iff there is a rule l → r if ϕ in R�

�1,l,r — which
we assume renamed if necessary to ensure vars(u | ψ) ∩ vars(l → r if ϕ) = ∅ — and a B�-unifier α ∈ Unif B�

(l = u) such
that v | χ = (r |ψ ∧ ϕ)α.

The following, basic observations about the above definitions may be helpful:

28 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
– The standard narrowing relation u �R v is just the special case of (1) where B = ∅ and φ(f) = ∅ for each f ∈�, and
in many approaches the even more special case where, furthermore, � is unsorted.

– The special instance of (2) where R = (�, B, �E, ∅) is a strongly deterministic, convergent, conditional theory has been
studied in detail in [20]. This work is of special interest for symbolic equational reasoning, since it provides a narrowing-
based constrained E
 B-unification algorithm.

That the constrained narrowing relation �R�
�1 ,l,r ,B�

is a correct implementation of the function R◦! is now obvious, since
we can give the following, alternative definition of R◦!:

(‡) R◦! ≡ λ[v |ψ].
∨

v|ψ α�
R�
�1,l,r ,B�

(r|ψ∧ϕ)α

[(r |ψ ∧ ϕ)α].

The exact relationship between the constrained narrowing relation �R�
�1 ,l,r ,B�

and the rewrite relation →C
R�

�1,l,r

on

B�-equivalence classes of constructor terms of sort State is clarified by the following

Lemma 4. (Lifting Lemma). Let R�

�1,l,r be the transformed theory of a ground coherent, topmost generalized rewrite theory R defined
in Section 4.3 and such that its constructors � are free modulo axioms B�. Then:

1. (Completeness). For any w, w ′ ∈ T�State such that: (i) [w] ∈ �v |ψ �, and (ii) [w] →C
R�

�1,l,r

[w ′], there is a constrained narrowing

step v |ψ α�R�
�1,l,r ,B�

(r |ψ ∧ ϕ)α such that [w ′] ∈ �(r |ψ ∧ ϕ)α�.

2. (Soundness). For any constrained narrowing step v | ψ α�R�
�1,l,r ,B�

(r | ψ ∧ ϕ)α such that �(r | ψ ∧ ϕ)α� �= ∅ and each [w ′] ∈
�(r |ψ ∧ ϕ)α� there exist [w] ∈ �v |ψ � such that [w] →C

R�
�1,l,r

[w ′].

As an immediate consequence of the above Lifting Lemma, we can characterize existential reachability in what might
be called a local, “piecemeal” way, as opposed to the global way provided by the predicate transformer R!n . But before
doing so we need a slight technicality. To avoid variable capture nonsense, the reflexive-transitive closure �∗

R�
�1 ,l,r ,B�

of the

constrained narrowing relation �R�
�1 ,l,r ,B�

should only use narrowing sequences of the form:

v1
α1�R�

�1,l,r ,B�
v2, . . . , vn

αn�R�
�1,l,r ,B�

vn+1

where for each substitution αi , 1 ≤ i ≤ n, all variables in ran(αi) are fresh, i.e., they are disjoint from all other variables used
earlier in the sequence. We then write v1

α�∗
R�

�1,l,r ,B�
vn+1, where α ≡ α1 . . . αn is called the accumulated substitution along

the sequence.

Theorem 9. (Existential Reachability Theorem). Let R�

�1,l,r be the transformed theory of a ground coherent, topmost generalized
rewrite theory R defined in Section 4.3 and such that its constructors � are free modulo axioms B�. Then, TR |= ∃(A →∗ B) holds,
say, with A ≡ u1 | ϕ1 ∨ . . . ∨ um | ϕm, iff there is an i, 1 ≤ i ≤ m, and a narrowing sequence ui | ϕi �∗

R�
�1,l,r ,B�

v | ψ such that

�(v |ψ) ∧ B � �= ∅. Furthermore, using the rules and B�-unifiers enabling each constrained narrowing step in ui | ϕi �∗
R�

�1,l,r ,B�
v |ψ ,

and the method described in the proof of Lemma 3, we can effectively find for each [w ′] ∈ �v |ψ ∧ B � an element [w] ∈ �ui | ϕi � such
that [w] →∗

C
R�

�1,l,r

[w ′].

Practical Issues. There are several practical issues that need to be addressed in order for reachability analysis by constrained
narrowing to get real traction. The discussion below makes no pretense of completeness; but all issues treated are surely
relevant. The first big issue is how to perform the non-emptiness check �(v |ψ) ∧ B � �= ∅. This is closely intertwined with a
second, very practical issue, namely, state space reduction. To begin with, whenever possible we should try to detect when in
a narrowing sequence ui | ϕi �∗

R�
�1,l,r ,B�

v |ψ we have �v |ψ � = ∅, so that we can stop it. Such emptiness can be decided if:

(i) there is a subsignature �0 ⊆� such that background theory T is such that T -satisfiability of QF �0-formulas corresponds
to their satisfiability in T�/E
B and is decidable, (ii) all �-substitution instances of QF �0-formulas are QF �0-formulas, (iii)
all conditions in the rewrite rules are QF �0-formulas, and (iv) all QF formulas appearing in the reachability problem
TR |= ∃(A →∗ B) are �0-formulas. This makes the non-emptiness problem �(v | ψ) ∧ B � �= ∅ decidable.

The million dollar question is how to check: (i) �v | ψ � = ∅ in a narrowing sequence ui | ϕi �∗
R�

�1,l,r ,B�
v | ψ , and (ii) the

non-emptiness �(v | ψ) ∧ B � �= ∅ when satisfiability of QF formulas is undecidable. Although formally these two problems

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 29
are closely related, pragmatically, the methods used to solve them can, and should, be quite different. To check �v | ψ � =
∅ we should use relatively inexpensive formula simplification methods, including SAT-solving, rewriting with �E modulo B ,
and also rewriting with �E≡ modulo B in the equality enrichment of (�, E
 B) [53]. Instead, to check the non-emptiness
�(v | ψ) ∧ B � �= ∅ we should: (i) first of all perform the cheap, B�-unification-based check that v | ψ ∧ B �= ⊥, and (ii)
in case this holds, we must have (v | ψ) ∧ B = w1 | ψ1 ∨ . . . ∨ wk | ψk , and we need to check if there is a j, 1 ≤ j ≤ k,
such that ψ j is satisfiable in T�/E
B . But this is equivalent to T�/E
B |= ∃ψ j , and therefore to T�/E
B �|= ∀¬ψ j . Therefore, if
�(v |ψ) ∧ B � �= ∅, we will have T�/E
B �|= ∀¬ψ j for some j, which can be automatically checked by a refutationally complete
inductive theorem prover, such as those based on various forms of superposition, e.g., [17,27].

The search space provided by constrained narrowing can be understood as a narrowing tree (a narrowing forest when the
initial symbolic state A is a disjunction of atomic predicates). Further state space reduction in the narrowing search process,
which is a form of infinite state symbolic model checking, can be obtained by various ways of merging states. The simplest
one is the folding, i.e., subsumption, of symbolic states [9]. In the context of constrained constructor patterns, folding can
happen if we have two nodes v | ψ and v ′ | ψ ′ in the narrowing tree such that v | ψ $B�

v ′ | ψ ′ . We can then “fold”
or “merge” the less general symbolic state v | ψ into the more general one v ′ | ψ ′ . More generally, even more powerful
symbolic state merging methods, such as those proposed in [11], can be used when satisfiability of the given QF formulas
is decidable.

Combining the two ideas of: (i) formula simplification, e.g., the elimination of a symbolic state v | ψ by some simplifica-
tion methods when we can show that �v | ψ � = ∅, or just expressing v | ψ by a simpler, equivalent formula; and (ii) state
space reduction, for example, by subsumption, so that a symbolic state is “folded” into a more general one, we arrive at a
useful notion of a state space reduction equivalence, which is the reflexive, symmetric and transitive closure ≈r of a given
family of simplification and state space reduction steps according to some chosen techniques such as those discussed above.
Note that both formula simplification and state space reduction steps are formula transformations, where some pattern for-
mula A is transformed into a simpler, semantically equivalent one A′ . For example, subsumption is the conditional formula
transformation:

(v |ψ)∨ (v ′ |ψ)→ (v ′ |ψ ′) if v |ψ $B�
v ′ |ψ ′.

Of course, we will apply those steps in a state-space reducing way, say, beginning with a symbolic state space description as
a pattern predicate D and obtaining an equivalent but more compact description D ′ such that D ≈r D ′ . The crucial property
about the relation ≈r is that it is semantics-preserving, in the sense that D ≈r D ′ ⇒ � D � = � D ′�.

Besides increasing performance by allowing a possibly much more compact description as a pattern predicate of the
narrowing forest explored so far, equivalences of the form ≈r may be crucial in the following sense. The set of all states
reachable from � A� can be symbolically described as the infinite disjunction:

∨
i∈N

R!i(A).

However, the space of all states reachable from � A� may be finitely describable if we can reach a fixpoint after finitely many
steps in the following sense:

Definition 11. Given a pattern predicate A, the symbolic predicate transformer R! has a fixpoint19 for A after finitely many
iterations relative to the state space reduction equivalence ≈r iff there is a k ∈N and pattern predicate formulas C and D
such that:

R!k+1(A)≈r C $B�
D ≈r

∨
0≤i≤k

R!i(A).

By repeated application of Lemma 3, the formula
∨

0≤i≤k R!i(A) describes the set of all states reachable from � A� in k
or fewer steps. Indeed, each atomic disjunct in this formula is exactly one of the symbolic states reachable by constrained
narrowing in k or fewer steps from some atomic disjunct in A. D is therefore a compact representation of the symbolic state
space describing all states reachable from A in k or fewer steps. But when D is a fixpoint of R! we get the set-theoretic
equality � D � = �

∨
0≤i≤k R!i(A)� =⋃

i∈N � R!i(A)�, and therefore a finite symbolic description of the set of all states reachable
from states in � A�.

Last, but not least, we should consider the eminently practical issue of how to best implement constrained narrowing
search from an initial pattern predicate to a pattern predicate goal for a topmost rewrite theory R using the transformed
theory R�

�1,l,r . For example, Maude does already have an implementation of unconditional narrowing modulo B (Case (1)
in Definition 10). But how should we implement Case (3) in Definition 10? The extremely good news is that there is no
need for a special implementation of Case (3), because it can be reduced to Case (1) by a simple theory transformation.

19 Strictly speaking, the fixpoint is that of the monotonic function λ[A]. [A] ∨ R!([A]), but this is just a technicality.

30 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
Such a theory transformation was already implicit in the discussion of B-equality between constrained constructor patterns,
(uσ | ϕσ) =B (u′ | ϕ′), in Section 5, where we viewed u | ϕ as a term in an extended signature consisting of |-separated pairs
of terms, whose first components are �-terms, and whose second components are QF �-formulas. The point is that, using
an extended equational theory defining such pairs, we can transform the conditional theory R�

�1,l,r = (�, E ∪ B, R�
�1,l,r, T , φ)

into an unconditional one (�•, E ∪ B, R•,�
�1,l,r), where �• is the extended signature of |-separated pairs, and where for each

rule l → r if ϕ in R�
�1,l,r we add an unconditional rule l | Q → r | Q ∧ ϕ to R•,�

�1,l,r , where the variable Q ranges over the
sort QFForm of QF formulas in �• .

6.3. Narrowing-based invariant verification

Invariants are the most basic safety properties of a system. They make sense for any transition system, so I start by giving
some basic definitions about invariants and coinvariants for any transition system Q = (Q , →Q), that is, for any set Q of
states together with a transition relation →Q⊆ Q 2.

Definition 12. (Invariants, Coinvariants, Stable and Costable Sets). Given a transition system Q = (Q , →Q) and a subset
Q 0 ⊆ Q of initial states, a subset I ⊆ Q (resp. C ⊆ Q) is called an invariant (resp. a coinvariant) for Q from Q 0 iff for each
a ∈ Q 0 and b ∈ Q , a →∗

Q b implies b ∈ I (resp. b /∈ C), where →∗
Q denotes the reflexive-transitive closure of →Q . Note that

I is an invariant (resp. C a coinvariant) from Q 0 iff Q \ I (resp. Q \ C) is a co-invariant (resp. invariant) from Q 0.
A subset A ⊆ Q is called stable (resp. costable) in Q iff for each a ∈ A and b ∈ Q , a →Q b (resp. b →Q a) implies b ∈ A.

An invariant I (resp. a coinvariant C) for Q from Q 0 is called inductive iff I (resp. C) is stable (resp. costable). Note that
inductiveness is equivalent to I stable and Q 0 ⊆ I (resp. C costable and Q 0 ∩ C = ∅).

In particular, for a topmost rewrite theory R satisfying the requirements in Section 4.3 for applying the R �→R�

�1,l,r
transformation, we have the transition system (T�,B�,State, →CR). Taking pattern predicates as the formal language to sym-
bolically specify subsets of T�,B�,State we can then use constrained narrowing with the rules in the transformed theory
R�

�1,l,r to reason about invariants and coinvariants in (T�,B�,State, →CR), that is, in the initial model CR of R.
Before going any further, a very simple, yet crucial observation is in order, namely, the “invertibility” of the rules in the

transformed theory R�

�1,l,r already pointed out in Section 4.3. That is, any rule l′ → r′ if (ϕγ)!�E,B in R�
�1,l,r is such that both

l′ and r′ are �-terms, so that the “inverse rule” r′ → l′ if (ϕγ)!�E,B shares the same property of rewriting constructor terms
to constructor terms. In fact, it follows immediately from Proposition 1 that for any [u], [v] ∈ T�,B�,State , (i) [u] →CR [v] iff
(ii) there is a �E�, B�-normalized ground substitution δ and a rewrite rule l′ → r′ if (ϕγ)!�E,B in R�

�1,l,r such that u =B�
l′δ,

v =B�
r′δ, and T |= (ϕγ)!�E,Bδ, so that u →R�

�1 ,l,r ,B�
r′δ, with v =B�

r′δ, iff (iii) using the inverse rule r′ → l′ if (ϕγ)!�E,B we

get an inverse rewrite step v →
R−1�

�1,l,r ,B�
l′δ, with u =B�

l′δ, where

R−1�

�1,l,r = {r′ → l′ if (ϕγ)!�E,B | l′ → r′ if (ϕγ)!�E,B ∈ R�
�1,l,r}

iff (iv) [v](→CR)−1[u]. That is, the inverse relation (→CR)−1 of the transition relation →CR on T�,B�,State is precisely

the transition relation associated to the initial model of the “inverse” rewrite theory R−1
�

�1,l,r = (�, E ∪ B, R−1�
�1,l,r, T , φ).

Therefore, we can use the constrained narrowing relation �
R−1�

�1,l,r ,B�
to symbolically reason backwards, i.e., with (→CR)−1,

about transitions in the initial model CR of R.
Throughout I of course assume that R satisfying the requirements in Section 4.3. Since to reason about invariants in

(T�,B�,State, →CR) we will use pattern predicates to symbolically specify subsets, our chosen set of initial states will be
specified by a pattern predicate Q 0, and the chosen invariant (resp. coinvariant) by pattern predicates I (resp. C). Con-
strained narrowing can then be used to reason about invariants and coinvariants in the following sense:

Forwards Reachability Analysis. Suppose that we wish to verify that in the transition system (T�,B�,State, →CR) the pattern
predicate C correctly specifies a coinvariant from initial states specified by the pattern predicate Q 0. By definition, this
exactly means that

⋃
i∈N

� R!i(Q 0)�∩ �C � = ∅.

But this holds if and only if for each atomic pattern predicate u | ϕ in Q 0 and each constrained narrowing sequence
u | ϕ �∗

R�
�1,l,r ,B�

v | ψ we have �(v | ψ) ∧ C � = ∅. Therefore, “all we have to do” is to perform breadth first search from all

atomic pattern predicates in Q 0, performing the emptiness check �(v | ψ) ∧ C � = ∅ for each atomic predicate v | ψ thus
reached. To do this, all the practical considerations at the end of Section 6.2 should be taken into account. For example, we
should use a state space reduction equivalence ≈r to keep the symbolic state space already explored in as compact a form
as possible. Essentially, three things can then happen:

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 31
1. If C is not a coinvariant from Q 0, it must be the case that there is a number k and a narrowing sequence
u | ϕ �k

R�
�1,l,r ,B�

v | ψ from an atomic predicate u | ϕ in Q 0 such that �(v | ψ) ∧ C � �= ∅. Furthermore, thanks to The-

orem 9, a counterexample ground computation can be constructed witnessing the violation of the invariant implicitly
defined by C . As pointed out at the end of Section 6.2, if indeed �(v | ψ) ∧ C � �= ∅ holds, it should be possible to
establish this by using a refutationally complete superposition-based inductive theorem prover.

2. If R! has a fixpoint for Q 0 after k iterations relative to ≈r and we have been able to show for each atomic pattern
predicate u | ϕ in Q 0 and each constrained narrowing sequence u | ϕ �n

R�
�1,l,r ,B�

v | ψ with 0 ≤ n ≤ k we have �(v |
ψ) ∧ C � = ∅, then we have proved that C is indeed a coinvariant from Q 0.

3. If no fixpoint of R! for Q 0 is found, even though C may be a coinvariant from Q 0, only bounded model checking up to a
given depth k can be effectively performed for this property following this method.

Backwards Reachability Analysis. To verify that in the transition system (T�,B�,State, →CR) the pattern predicate C correctly
specifies a coinvariant from initial states specified by the pattern predicate Q 0 means verifying that R �|= ∃(Q 0 →∗ C), which
is equivalent to proving R−1

�

�1,l,r �|= ∃(C →∗ Q 0). But this exactly means that

⋃
i∈N

� R−1!i(C)� ∩ � Q 0 � = ∅,

where R−1! denotes the predicate transformer associated to the rules R−1�
�1,l,r in the theory R−1

�

�1,l,r . As for forwards
narrowing verification, we try to verify this by breadth first search from all atomic pattern predicates in C , but now using
the inverse constrained narrowing relation �

R−1�
�1,l,r ,B�

; and for each atom v | ψ thus reached we perform the emptiness

check �(v |ψ) ∧ Q 0 � = ∅. Similarly to the forwards case, three things can happen:

1. If C is not a coinvariant from Q 0, it must be the case that there is a number k and a narrowing sequence
u | ϕ �k

R−1�
�1,l,r ,B�

v |ψ from an atomic predicate u | ϕ in Q 0 such that �(v |ψ) ∧C � �= ∅. Furthermore, a counterexample

ground computation can be constructed witnessing the violation of the invariant implicitly defined by C .
2. If R−1! has a fixpoint for C after k iterations relative to ≈r and we have been able to show for each atomic pattern

predicate u | ϕ in C and each constrained narrowing sequence u | ϕ �n
R−1�

�1,l,r ,B�

v | ψ with 0 ≤ n ≤ k that �(v | ψ) ∧
Q 0 � = ∅, then we have proved that C is indeed a coinvariant from Q 0.

3. If no fixpoint of R−1! for C is found, even though C may be a coinvariant from Q 0, only backwards bounded model
checking up to a given depth k can be effectively performed for this property following this method.

This backwards narrowing method is indeed the one utilized in the Maude-NPA tool [35], where R specifies the behavior
of honest principals and a Dolev-Yao intruder in a cryptographic protocol, C is an “attack state” where a malicious intruder
has broken the protocol, and Q 0 specifies the initial states where no protocol steps have yet been taken and the intruder
only knows public information. The remarkable effectiveness with which Maude-NPA can reach a fixpoint in many practical
cases is due to its quite sophisticated state space reduction equivalence ≈r (see [36]). The formal setting for Maude-NPA is
close but not exactly the same as the one adopted here. However, as here, some constraints are also carried along when
performing (backwards) narrowing steps [37].

Verifying Inductive Invariants. Finding an invariant I from Q 0 that is furthermore inductive can be nontrivial. However,
if we are able to specify such an invariant I , then verifying that it is indeed an inductive invariant can be relatively easy
to do by constrained narrowing, because, unlike in the just-described forwards and backwards methods, we do not need
to rely on reaching a fixpoint. Indeed, I will be an inductive invariant from Q 0 iff we have the following two inclusions:
� R!(I)� ⊆ � I �, and � Q 0 � ⊆ � I �. But a sufficient condition for this is to find pattern predicates I ′, I ′′, A, Q ′

0 such that:

R!(I)≈r A $B�
I ′ ≈r I and Q 0 ≈r Q ′

0 $B�
I ′′ ≈r I.

The great advantage in this case is that R!(I) can be computed as the disjunction of atomic pattern predicates obtained by
performing all one-step constrained narrowing steps with �R�

�1 ,l,r ,B�
from the atomic predicates in I .

Verifying Inductive Coinvariants. The method is entirely similar to that for verifying inductive invariants. C will be an
inductive coinvariant from Q 0 iff we have: � R−1!(C)� ⊆ �C �, and � Q 0 � ∩ �C � = ∅. But a sufficient condition for this is to
find pattern predicates C ′, A such that R−1!(C) ≈r A $B�

C ′ ≈r C and proving � Q 0 � ∩ �C � = ∅. And, of course, R−1!(C) can
be computed as the disjunction of atomic pattern predicates obtained from some atomic predicate in C by performing all
one-step (backwards) constrained narrowing steps with �

R−1�
,B

.

�1,l,r �

32 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
7. Related work and conclusions

Related work falls into three main areas: (i) rewriting techniques; (ii) symbolic model checking; and (iii) Constraint Logic
Programming (CLP) and theorem proving.

Related Work on Rewriting Techniques. As mentioned in the Introduction, one of the main goals of proposing generalized
rewrite theories is to unify various forms of conditional rewriting with constraints in their conditions that have appeared
in somewhat different fashions. Perhaps the work most closely related to this one is that on rewriting modulo SMT [87,7]
and the closely related work [7]. In rewriting modulo SMT, rewriting happens modulo axioms B , and there are no other
equations, except those defining a �0-reduct of the theory’s initial algebra with decidable QF-satisfiability in the sense
explained in Section 5.3. Furthermore, the rewrite rules can always be put in the format l → r if ϕ , where l and r are
constructor terms not involving any �0-subterms and ϕ is a QF �0-formula. Rewriting modulo SMT provides a sound and
complete method for reasoning about existential reachability problems, very much like it is done in Section 6.2. Perhaps the
best way of understanding the relationships of this work with rewriting modulo SMT is by seeing rewriting modulo SMT
as a restricted form of constrained narrowing. Specifically, by realizing that: (i) rewriting modulo SMT can be viewed as
the special case of constrained narrowing where the B-unification problem u = l between the term u in an atomic pattern
predicate u | ϕ and the lefthand side of a rule l → r ϕ can be solved by B-matching u against l, so that u =B lα, and (ii)
since in pattern predicates and in rules we only consider constraints ϕ that are QF �0-formulas, whose satisfiability in
the �0-reduct of the theory’s initial algebra is assumed decidable, we are in an easier situation to reason about emptiness,
non-emptiness and subsumption of pattern predicates than in the more general case considered in Section 6.2, where
such constraints can be arbitrary QF �-formulas. Observations (i) and (ii) clearly indicate that rewriting modulo SMT can be
implemented more efficiently than constrained narrowing but has a more limited scope of applicability, both in terms of the
problems that it can solve and of the rewrite theories to which it can be applied. In fact, these two techniques complement
each other.

There is a second body of work in which the notion of constrained rewriting has a completely different meaning and
semantics than that of rewriting modulo SMT, namely, a universal meaning exactly in the sense of Section 6.1 in this paper.
This work includes, for example, the work of Ayala-Rincón [8], Falke and Kapur [42,43,40], and Kop and Nishida [60,61].
Something common to all these approaches is that, in addition to the standard notion of rewriting u →R v essentially
coinciding with that in Section 6.1 except for minor technical differences, an additional notion of what might be called
constrained contextual rewriting is also used. This notion is also universal. It allows rewriting a constrained term u | ϕ using
ϕ as a “context” that can be assumed, so that a rewrite u | ψ →R v | ψ exists if there is a rule l → r if ϕ and a subterm
of u matching l with substitution α (were decidable satisfiability of ϕ , ψ and their instances in a given reduct model is
assumed) such that the formula ψ ⇒ ϕα is valid in the given reduct model and v is the result of rewriting u with such a
rule and substitution at that position. At least in [8] and [42,43,40], the semantics given to such rewrite theories is clearly
equational. Therefore, the goal is to achieve a more powerful, symbolic form of equational reasoning, so that notions such
as termination and confluence become crucial and are studied for these theories. For example, conditional termination for
them is studied in, e.g., [42,40], and confluence in [43,40]. The work of Kop and Nishida [60,61] is similar, but it seems to
go beyond equational reasoning in some cases by allowing extra variables in conditions and righthand sides that can model
“open system behavior” such as, for example, input-output behavior in a programming language’s symbolic semantics. As
I discuss later, something common to all the works in [8,42,43,40,60,61] is a shared interest in inductive theorem proving
applications.

Related Work on Symbolic Model Checking. By describing sets of states symbolically by formulas or by suitable automata,
symbolic methods can be applied to model checking verification. Traditionally, sets of states have been encoded as Boolean
formulas, and BDDs or SAT solvers are used for model checking such systems. However, such boolean representations are
not enough to deal with unbounded data structures and with nontrivial control structures such as recursive function calls. In
order to cope with these, SMT-based model checking, where sets of states and transitions are symbolically described using
logical formulas in decidable theories that can be handled by SMT solvers, has been introduced, e.g., [82,30,88,79,49,50,6,
29,45,46,77,95,99,18]. Many SMT-based model checking techniques have been developed for a wide range of applications,
including array-based systems, e.g., [49,50], hardware systems, e.g., [99], real-time and hybrid systems, e.g., [94,21], and
programing languages, e.g., [6,29,13,77,56,52].

Instead of using formulas solvable by an SMT solver to describe states, one can describe sets of states that are languages
effectively specified using some kind of automata. In this way, a style of automata-based infinite-state model checking has
also been developed in work such as, e.g., [1,16,14,15,48,80,5,4,3].

Both the SMT-based and automata-based approaches to symbolic model checking are unified in the constrained narrow-
ing approach presented in Sections 6.2–6.3. Let me explain what the exact relationship is. The key point is that atomic
pattern predicates u | ϕ provide a very expressive way of symbolically describing sets of states without prescribing a fixed
format for state representation. SMT-based model checking approaches typically correspond to specific formats for state rep-
resentation, where the state pattern u is either a fixed-length vector of so-called “state variables,” or an array pattern. But
for systems with nontrivial state structures such as, for example, many distributed systems, such fixed formats for states
can easily become a straight jacket.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 33
Another way in which constrained narrowing extends SMT-based model checking is by dropping the requirement that
satisfiability of the constraint ϕ is decidable. Of course, in the decidable case one enjoys many advantages. But this comes at
the price of lack of extensibility: as soon as some functions in a system’s state push it outside the case where satisfiability
of constraints is decidable, one is out of luck. Instead, the optimistic approach taken in constrained narrowing allows sym-
bolic model checking with constraints whose satisfiability may not be decidable by implicitly relying on a more intimate
combination of symbolic model checking and inductive theorem proving, where an inductive theorem prover becomes an
oracle that is consulted for dealing with constraints outside the decidable fragment. The good news is that there is a wealth
of experience and useful techniques in SMT-based model checking that can be leveraged to make this more general form of
symbolic model checking effective in practice.

I now explain how constrained narrowing is related to symbolic model checking approaches based on standard finite
automata or on tree automata. Since finite automata are just the special case of �-tree automata where the operators in
� are unary, it is enough to consider tree-automata-based symbolic model checking. The key point is that, as explained
in [25,76], tree automata and order-sorted signatures are exactly the same thing, and that the specification language of free
(i.e., B� = ∅) order-sorted constructor patterns u that are linear, i.e., have no repeated variables, is closed under all Boolean
operations [76], just as tree automata are, and, as explained in [76], linear patterns have essentially the same expressive
power as tree automata. Specifically, they are essentially co-extensive with the sort expressions in [26]. In fact, the set �u�
defined by any linear pattern is always a regular tree language, and any regular tree language is always describable by the
linear pattern x :s, where s is a sort/state in an order-sorted signature/tree-automaton �. The upshot of these observations
is that constrained narrowing provides an alternative form of tree-automata-based symbolic model checking in which: (i)
patterns are free and linear; (ii) all constraints are the trivial constraint �, and (iii) rewrite rules describing state transitions
are unconditional and linear. Three advantages of the pattern-based approach are that: (i) it is more natural and direct to
describe a set of states by patterns than by tree automata, (ii) the infinite set of linear patterns u on a given order-sorted
signature � describe not just the finite set of regular tree languages defined by the sorts/states of � itself, but the infinite
class of languages associated to the regular tree automata implicitly defined by the patterns u themselves, and (iii) by allowing
non-linear patterns and rewrite rules and giving up on closure under negation, we still remain effectively closed under
unions and intersections of sets of states as explained in Section 5, and the entire approach is naturally extended beyond
tree-automata-based model checking.

Last, but not least, the work on symbolic model checking most closely related to the ideas in Sections 6.2–6.3 is the work
on narrowing-based LTL model checking of rewrite theories [38,9,10] and on the Maude-NPA [35]. In all these works the
rewrite theory R is assumed to be unconditional and its equational theory (�, E ∪ B) is assumed to be FVP, so that there is a
finitary E∪ B-unification algorithm that can be used to perform narrowing steps. In relation to all that work, this work’s new
contribution is to make narrowing-based symbolic model checking much more widely available by: (i) drastically expanding
the class of, now conditional, rewrite theories to which it can be applied thanks to the R �→R�

�1,l,r theory transformation;
(ii) making the symbolic language for describing sets of states substantially more expressive by allowing constrained pattern
predicates as opposed to just patterns, and (iii) making such symbolic model checking possible even when satisfiability of
constraints is undecidable. One important difference is that, for the moment, the support for LTL and LTLR symbolic model
checking provided in [38,9,10] has not yet been extended to the constrained narrowing setting. This is obviously important
future work.

Relationship to CLP and Theorem Proving. We can naturally understand a CLP program P (see the survey [54] on CLP and
its bibliography up to 1994) as a generalized rewrite theory whose set P of rules contains rules20 of the form:

p(u)→ p1(u1), . . . , pn(un) if ϕ

where: (i) when n = 0, the rule’s righthand side is the constant true and then the rule is called a fact, (ii) P has signature
� = �
 �0 and the terms p(u), p1(u1), . . . , pn(un) are �-terms of a privileged sort Pred having a constant true and a
binary associative-commutative symbol _, _ with identity true, (iii) ϕ is a �0-formula21 belonging to a conjunction-closed
class C of �0-formulas whose satisfiability in T�/E
B |�0 is decidable (where E
 B are the equations in P), and (iv) for any
�-substitution θ , if ϕ ∈ C then ϕθ ∈ C .

A query for P is a constrained �-term q1(v1), . . . , qk(vk) |ψ with ψ ∈ C and its solutions are the constrained substitutions
θ | φ such that φ is satisfiable in T�/E
B |�0 and there is a constrained narrowing sequence:

q1(v1), . . . ,qk(vk) |ψ θ�∗
P ,B�

true | φ.

That is, solving the query q1(v1), . . . , qk(vk) |ψ exactly corresponds to solving the existential reachability problem:

P |= ∃(q1(v1), . . . ,qk(vk) |ψ →∗ true | �).

20 Logically, rules are constrained Horn clauses p(u) ⇐ p1(u1) ∧ . . .∧ pn(un) | ϕ . Constrained narrowing then coincides with constrained resolution deduction.
21 Recall Footnote 5, explaining that a rule’s condition ϕ need not be QF in a broader understanding of generalized rewrite rule.

34 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
The above three-thousand-feet-high description of CLP hides a multitude of useful engineering details. For example, the
accumulated constraint along a narrowing path, say ϕ , is called the store and is split into an “active part” ϕ1 and a “passive”
one ϕ2. Also, various state space reduction techniques are used to detect failures, i.e., symbolic states which will never reach
the goal true | �.

The perhaps not so obvious point about this brief comparison with CLP is that it opens a two-way street between CLP
and generalized rewrite theories. On the one hand, useful CLP techniques can be naturally adapted to make constrained
narrowing more efficient; on the other hand, various extensions of CLP can be developed such as, for example, (i) reasoning
modulo axioms B; (ii) order-sorted typing and subtype polymorphism; and (iii) combinations of CLP with equational-style
functional programming in the extended setting (i)–(ii).

In the theorem proving area, the work by C. Kirchner, H. Kirchner, and M. Rusinowitch on equational theorem proving
with constraints [59] extended superposition theorem proving with notions such as constrained formulas, formula simplifi-
cation with constrained equations oriented as rewrite rules, and constrained superposition (of which the constrained Horn
clause resolution used in CLP is a special case). These notions have influenced subsequent work on superposition theorem
proving with constraints, e.g., [47,2]; and in the combination of symbolic constraint solvers using constrained rewriting
proposed by H. Kirchner and C. Ringeissen [58].

The constrained rewriting work in [57,41–43,40,60], has had as one of its main goals the application of (universal) con-
strained rewriting to inductive theorem proving, in two closely related ways. On the one hand, constrained rewriting becomes
part of an inference system to prove theorems in initial algebras; on the other hand, constrained rewrite rules are used
to give semantic definitions for an imperative programming language, and to then obtain a programming-language-specific
theorem prover for such a language. The work in [97,96,61] can be seen as yet another application of constrained rewriting
to the verification of imperative programs.

The work on verification of inductive invariants in Section 6.3 is closely related to the work on deductive verification of
safety properties of rewrite theories in [83,85,84]. They both share the idea of using one-step narrowing to verify inductive
invariants, but Section 6.3 revisits this topic in the new setting of constrained narrowing and state properties specified by
means of pattern predicates. Furthermore, it deals with both variants and co-invariants, which can help the verification effort
in practice, since sometimes expressing a coinvariant as a pattern predicate may be easier than expressing its complement
invariant set.

Another body of inductive theorem proving work, perhaps the most closely related to the present one, is that on reach-
ability logic [92,93,64,91,78,63,23]. In equational inductive theorem proving one reasons about validity of formulas in an
initial algebra T�/E
B , whereas in reachability logic one reasons about validity of reachability formulas in the initial model
TR of a generalized rewrite theory R. Although originally developed for purposes of verifying properties of programs in a
programming language from their rewriting logic semantics [92,93], it has later been extended to verify reachability prop-
erties in general rewrite theories [64,91,63,23]. This subsequent development is the one most closely related to the present
work. In particular, the ideas in [91] are the most closely related to this work since: (i) the language of constrained pat-
tern predicates based on constructors was first identified in [91] as a suitable language of state predicates on which to base
reachability logic formulas so that large portions of the logic can be mechanized; and (ii) constrained narrowing is implicitly
used as the key symbolic technique in the Step

∀ + Subsumption inference rule in [91].

Conclusions. I have presented a new notion of generalized rewrite theory that unifies various previous approaches to con-
strained rewriting. Since such theories are very general and combine both equations and rules, the issue of their symbolic
executability is nontrivial. The first main effort has been to find suitable theory transformations that can bring a class of
generalized rewrite theories as wide as possible into the executable fold. The theory transformation R �→ R�

�1,l,r is the
culmination of this effort. A second main effort has been to develop symbolic techniques for reasoning about generalized
rewrite theories. To begin with, an expressive language of state predicates based on constructor pattern predicates has
been studied. Then, symbolic techniques such as universal constrained rewriting, sound and complete solution of existential
reachability problems by constrained narrowing, and applications to invariant verification have been studied. As the dis-
cussion on related work makes clear, these techniques live within, and can contribute to, a larger ecosystem of symbolic
verification techniques, including both symbolic model checking and theorem proving. In fact, the borderline between these
two areas becomes more and more tenuous as time goes on, and what this work explicitly proposes is their synergistic
combination.

This is of course easier said than done. Much work remains ahead, both in implementing these ideas, experimenting
with them, and engineering mature tools that can verify challenging case studies. I am looking forward to tackling these
challenges and hope that this work will stimulate the interest of other researchers, so that we can collectively bring these
ideas to fruition.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 35
Acknowledgements

I thank the referees for their constructive criticism and valuable suggestions to improve the paper. This work has been
partially supported by NRL under contract number N00173-17-1-G002.

Appendix A. Proofs of theorems

Proof of Lemma 1.

Proof. First of all, since for any QF formula ϕ and substitutions θ, γ we have the implication (T |= ϕθ) ⇒ (T |= ϕθγ),
it is easy to show, using the definition of u →R v , that both TR and TR(X) are objects of TransR . Consider now any
(A, →A) ∈ TransR . Uniqueness of a homomorphism h : TR→ (A, →A) in TransR is assured, since, if it exists, it must be
the unique �-homomorphism h : T�/G → A. To show existence, note that any α ∈ [X→A] extends to a homomorphism
_α : TR(X) → (A, →A) in TransR . Furthermore, since transitions in TR are just the special ground case of transitions in
TR(X), the unique �-homomorphism T�/G ↪→ T�/G(X) also extends to a homomorphism TR ↪→ TR(X). But then, our
desired homomorphism is just the composition:

TR ↪→ TR(X)
_α−→ (A,→A). �

Proof of Theorem 4.

Proof. Call (†) the above property, claimed equivalent to coherence. Since h : CR(X) → TR(X) is already a �-algebra iso-
morphism, it will be a �-transition system isomorphism iff the following property holds:

(‡) ∀u, v ∈ T�(X) u→R v ⇒ ∃v ′ ∈ T�(X) u!�E,B →R/B v ′ ∧ v!�E,B =B v ′!�E,B .

But since we always have u →R/B v ⇒ u →R v , we get (‡) ⇒ (†). So we only need to prove (†) ⇒ (‡). But, by definition,
u →R v iff there exists a term u′ ∈ T�(X), an φ-unfrozen position p in u′ , a rule l → r if ϕ in R and a substitution θ such
that: (i) T |= ϕθ ; (ii) u =E
B u′ = u′[lθ]p ; and (iii) u′[rθ]p =E
B v . Letting w = u′[rθ]p this means that u =E
B u′ , u′ →R/B w ,
and w =E
B v , which by (†) implies that there is a w ′ ∈ T�(X) such that u′!�E,B →R/B w ′ and w!�E,B =B w ′!�E,B . But by the
Church-Rosser Theorem, u!�E,B =B u′!�E,B and v!�E,B =B w ′!�E,B . Therefore, we get u!�E,B →R/B w ′ and v!�E,B =B w ′!�E,B , yielding
(‡), as desired. The proof for the ground coherence case is just a restriction of the above proof requiring u, v ∈ T� in
(‡). �
Proof of Theorem 5.

Proof. Note that Rl ≡R iff TR(X) = TRl
(X). To see that TR(X) = TRl

(X) just note that: (i) both �-transition systems
share the same �-algebra, namely, T�/E
B(X), (ii) since, up to variable renaming, �l� �E1,B1

contains the identity variant
(l, id) we have R ⊆ Rl and therefore (→R) ⊆ (→Rl

); (iii) any rewrite u →Rl
v with a rule l′ → (rγ)!�E,B if (ϕγ)!�E,B and

substitution θ , where (l′, γ) ∈ �l� �E1,B1
and l → r if ϕ ∈ R , can be performed with l → r if ϕ and substitution γ θ , since

lγ θ =E
B l′θ and rγ θ =E
B r′θ , and T |= ϕγ θ iff T |= (ϕγ)!�E,Bθ .

To prove that Rl is ground coherent we show that the characterization in Theorem 4 holds. Suppose that u ∈ T� ,
v ∈ T�(X) u →Rl/B v and v!�E,B ∈ T� . We then must show that there is a term v ′ ∈ T�(X) such that u!�E,B →Rl/B

v ′ and v!�E,B =B v ′!�E,B . But u →Rl/B v just means that there is a rule l′ → (rγ)!�E,B if (ϕγ)!�E,B in Rl and substitu-

tion θ , where (l′, γ) ∈ �l� �E1,B1
and l → r if ϕ ∈ R , such that, since Rl is topmost, we have u =B l′θ , v = (rγ)!�E,Bθ ,

and T |= (ϕγ)!�E,Bθ and, by assumption, v!�E,B ∈ T� . In general, γ θ need not be a ground substitution. But we can
choose a ground substitution η such that γ θη is ground. Furthermore, since by confluence u!�E,B =B (lγ θ)!�E,B and
u!�E,B is ground, by �E, B-rewriting being substitution-closed we must also have u!�E,B =B (lγ θη)!�E,B . But this means that
(u!�E,B , ((γ θη)!�E,B)|vars(l)) is a variant of l, since, by � a constructor signature and γ θη is ground, up to B-equivalence we
can choose (γ θη)!�E,B to be an �-substitution. Therefore, we must have a variant (l′′, μ) ∈ �l� �E1,B1

and a substitution δ
with dom(δ) ⊆ ran(μ) such that u!�E,B =B l′′δ, and ((γ θη)!�E,B)|vars(l) =B μδ. But this means that we have a decomposition
γ θη =E
B μδ
 (γ θη)|dom(γ θη)−vars(l) , with each component a ground substitution. Therefore, we have as well a compo-
sition γ θη =E
B μδ(γ θη)|dom(γ θη)−vars(l) such that: (i) since T |= (ϕγ)!�E,Bθ we also have T |= (ϕγ)!�E,Bθη, and therefore
T |= ϕμδ(γ θη)|dom(γ θη)−vars(l) . But this means that we have a rewrite step u!�E,B →Rl/B v ′ with rule l′′ → (rμ)!�E,B if (ϕμ)!�E,B
and substitution δ(γ θη)|dom(γ θη)−vars(l) such that v ′ = (rμ)!�E,Bδ(γ θη)|dom(γ θη)−vars(l) . Furthermore, since v = (rγ)!�E,Bθ , and
v!�E,B ∈ T� , by confluence and �E, B-rewriting being substitution-closed we also have (rγ θη)!�E,B =B v!�E,B , and, by the
Church-Rosser Theorem, v ′!� = ((rμ)!� δ(γ θη)|dom(γ θη)−vars(l))!� =B v!� , as desired. �
E,B E,B E,B E,B

36 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
Proof of Theorem 6.

Proof. Preservation of rule executability has already been shown. The semantic equivalence R ≡ R�1 follows form the
following observations: (1) If u →R v with rule l → r if ϕ in R , so that u =E
B u′ = u′[lμ]p and u′[rμ]p =E
B v , then
u →R�1

v with rule l → r′ if ϕ ∧ θ̂ in R�1 and substitution θμ, where θ = {xp �→ t|p}p∈P , so that u =E
B u′ = u′[lμ]p =
u′[lθμ]p , and, since r = r′θ , u′[r′θμ]p = u′[rμ]p =E
B v . (2) Conversely, If u →R�1

v with rule l → r′ if ϕ ∧ θ̂ in R�1 and
substitution α such that u =E
B u′ = u′[lα]p and u′[r′α]p =E
B v , since T�/E
B |= (ϕ ∧ θ̂)α, and r = r′θ , we must have
r′α =E
B rα, and therefore u′[r′α]p =E
B u′[rα]p =E
B v , so that u →R v . �
Proof of Theorem 7.

Proof. To prove that R ≡gr R
�

�1,l,r we just need to show →R |T 2
�
=→R�

�1,l,r
|T 2

�
. But any rewrite step (ground or not)

u →R�

�1,l,r
|T 2

�
v , say with rule l′ → r′ if (ϕγ)!�E,B where (l → r if ϕ) ∈ R and (〈l′, r′〉, γ) ∈ �〈l, r〉��

�E1,B1
, say with substitution

θ , is also a rewrite step u →R v with substitution γ θ . Therefore, →R |T 2
�
⊇→R�

�1,l,r
|T 2

�
. Two show →R |T 2

�
⊆→R�

�1,l,r
|T 2

�
,

assume u →R v with u, v ground terms. Since R is topmost, this means that we have a substitution θ and a rule l → r if ϕ
in R such that T |= ϕθ , u =E
B lθ and v E
Brθ . In general, θ need not be a ground substitution. However, we can choose
a ground substitution η such that θη is ground. And, since u and v are ground terms, and equational deduction is closed
under substitution, we also get T |= ϕθη, u =E
B lθη and v =E
B rθη, and therefore the same rewrite step u →R v can also
be achieved with ground substitution θη mapping all variables in the rule to ground terms. But by sufficient completeness
this means that ((〈lθη, rθη〉)!�E,B , (θη)!�E,B) is a constructor variant of 〈l, r〉 and therefore we have (〈l′, r′〉, γ) ∈ �〈l, r〉��

�E1,B1

and substitution δ such that 〈l′, r′〉δ =B1 (〈lθη, rθη〉)!�E,B and (γ δ)|vars(〈l,r〉) =B1 ((θη)!�E,B)|vars(〈l,r〉) , which gives us a rewrite
step u →R�

�1,l,r
|T 2

�
v with rule l′ → r′ if (ϕγ)!�E,B and substitution θη, as desired.

The proof that R�

�1,l,r is ground coherent reasons in a way similar to both the proof of the above containment →R |T 2
�
⊆

→R�

�1,l,r
|T 2

�
and (even more closely) the proof of ground coherence of Rl in Theorem 5. It is left to the reader. �

Proof of Proposition 1.

Proof. Let [u], [v] ∈ C�/�E,B be such that [u] →C
R�

�1,l,r

[v] holds. Because of the isomorphism CR�

�1,l,r

∼= TR this means that

there is a substitution μ and a rule l → r if ϕ in R such that: (i) u =B (lμ)!�E,B , (ii) T |= ϕμ, and (iii) v =B (rμ)!�E,B . Further-

more, reasoning as in the proof of Theorem 7, we may assume without loss of generality that μ is a �E�, B�-normalized
constructor ground substitution. Therefore, by Definition 3 and the ground assumption, we have u =B�

(lμ)! �E1,B1
and

v =B�
(rμ)! �E1,B1

. But this means that (〈u, v〉, μ) is a ground constructor variant of 〈l, r〉. Therefore, there is a construc-

tor variant (〈l′, r′〉, γ) ∈ �〈l, r〉��
�E1,B1

and a �E�, B�-normalized constructor ground substitution δ such that 〈l′, r′〉δ =B1 〈u, v〉
and (γ δ)|vars(〈l,r〉) =B1 μ|vars(〈l,r〉) . Let Z0 = vars(ϕ) \vars(〈l, r〉). We can choose δ so that δ|Z0 =μ|Z0 and μ =B1 γ δ. Therefore,
T |= ϕμ iff T |= ϕγ δ iff T |= (ϕγ)!�E,Bδ. But, by Definition 3 and the �E�, B�-normalized constructor ground substitu-
tion assumption on δ, we also have u =B�

(lμ)! �E1,B1
=B�

l′δ and v =B�
(rμ)! �E1,B1

=B�
r′δ. Therefore, using the rule

l′ → r′ if (ϕγ)!�E,B in R�
�1,l,r we obtain a rewrite step u →R�

�1,l,r ,B�
r′δ, with v =B�

r′δ, as desired. �
Proof of Proposition 2.

Proof. Since for each 1 ≤ l ≤ n and each such α we have �(uk1 |
∧

1≤l≤n ϕkl)α� ⊆ �(uk1 | ϕkl)α� = �(ukl | ϕkl)α� ⊆ �ukl |
ϕkl �, the ⊇ containment is obvious. To see that the ⊆ containment also holds, let [v] ∈⋂

1≤l≤n �ukl | ϕkl �. By the variable
disjointness assumption this means that there are disjoint ground substitutions ρl , 1 ≤ l ≤ n, such that [v] = [uklρl] ∈
�ukl | ϕkl �, 1 ≤ l ≤ n. But this means that the substitution ρ = ρ1
 . . .
 ρn B�-unifies the set {uk1 , . . . , ukn }, so there is a
β ∈ Unif B�

({uk1 , . . . , ukn }) and a ground substitution γ such that ρ =B�
βγ , and, furthermore, T�/E∪B |= (

∧
1≤l≤n ϕkl)βγ .

Therefore, [v] ∈ �(uk1 |
∧

1≤l≤n ϕkl)β� ⊆⋃
α∈Unif B�

({uk1 ,...,ukn })�(uk1 |
∧

1≤l≤n ϕkl)α�, as desired. �
Proof of Theorem 8.

Proof. By the definition of →CR and assumption (ii), (2) and (3) are equivalent. Note that (1) ⇒ (2) because, by assumption
(iii), we have an isomorphism γ : CR(X) ∼= TR(X), and therefore CR(X) ∈ TransR . But this means that, assuming X ⊃ Y ,
for the map ι ∈ [X→C

�/�E,B(X)] such that (∀x ∈ X) ι(x) = [x]B , we have tι = [t!�E,B]B , and t′ι = [t′!�E,B]B . But since CR(X) |=
(∀Y) t →∗ t′ , this then forces (2), as desired. The proof that (2) ⇒ (1) is an easy induction on the length of the sequence

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 37
[t!�E,B]B →∗
CR(X)

[t′!�E,B]B using the fact that for each (A, →A) ∈ TransR and α ∈ [X→A] we have a �-homomorphism of
algebraic transition systems:

CR(X)
γ∼= TR(X)

α−→ (A,→A),

and γ gives us the equivalence [u!�E,B]B→CR [v!�E,B]B ⇔ [u]E
B→R [v]E
B . �
Proof of Corollary 1.

Proof. By the equivalence (1) ⇔ (3) in Theorem 8 we will be done of we show that if a term w exists such that
t!�E,B →∗

R,B;!�E,B
w and w =B t′!�E,B , then such a term can be effectively found after a finite number of steps. But if such

a w exists, there will be a smallest length n possible for a rewrite sequence t!�E,B →∗
R,B;!�E,B

w such that w =B t′!�E,B . There-

fore, since, by assumptions (iv)–(vii), there is only a finite number of possible rules and associated B-matching substitutions
allowing a rewrite step with →R,B , and such substitutions can be computed in finite time; and by assumption (vi) whether
any of those B-matching substitutions satisfies or not the corresponding rule’s condition can also be determined in finite
time, we can effectively compute a finitely branching search tree with t!�E,B as its root node and edges corresponding to
→R,B;!�E,B

rewrite steps, so that our desired term w will appear at depth n in such a tree. �
Proof of Lemma 3.

Proof. To see the ⊆ containment, let [w] ∈ R!�v | ψ �. This means that there is a [vρ] ∈ �v | ψ � such that [vρ] →CR [w].
But since →CR=→C

R�
�1,l,r

, by Proposition 1 this just means that there is a rule γ : l → r if ϕ in R�
�1,l,r and a ground

constructor substitution δ such that [vρ] = [lδ], [w] = [rδ], and T |= ϕδ, which, by condition (iv)-(c) in Definition 6, is
equivalent to T�/E
B |= ϕδ. But, by the variable disjointness assumption, ρ and δ are disjoint and ρ
 δ B�-unify v = l.
Therefore, there is a B�-unifier α ∈ Unif B�

(l = v) and a ground constructor substitution η such that ρ
 δ =B�
αη. But this

means that [w] ∈ �(r | ψ ∧ ϕ)α� ⊆ � R◦!([v | ψ])�, as desired. Let us now prove the ⊇ containment. Suppose [w] ∈ � R◦!([v |
ψ])�. This means that there is a rule γ : l → r if ϕ in R�

�1,l,r and a B�-unifier α ∈ Unif B�
(l = v) such that [w] = [rαρ] ∈ �(r |

ψ ∧ ϕ)α�. Let Y = vars(lαρ) and choose any ground substitution τ ∈ [Y→T�]. Then, since (ψ ∧ ϕ)α(τ
 ρ) = (ψ ∧ ϕ)αρ ,
T�/E
B |= (ψ ∧ ϕ)αρ , which by condition (iv)-(c) in Definition 6 is equivalent to T |= (ψ ∧ ϕ)αρ , [vα(τ
 ρ)] = [lα(τ
 ρ)],
and [w] = [rαρ] = [rα(τ
 ρ)] we have [vα(τ
 ρ)] ∈ �v | ψ � such that [vα(τ
 ρ)] →C

R�
�1,l,r

[w], and therefore [w] ∈
R!�v |ψ �, as desired. �
Proof of Lemma 4.

Proof. Follows immediately from the definition (‡) of R◦! and the proof of Lemma 3. Specifically, the proof of Soundness is
a rephrasing of the proof of the ⊆ containment in Lemma 3, and the proof of Completeness rephrases the proof of the ⊇
containment in Lemma 3. �
Proof of Theorem 9.

Proof. TR |= ∃(A →∗ B) holds iff there is an n, n ≥ 0, such that � R!n([A]) ∧ [B]� �= ∅. But, by the definition of R◦! in (‡),
this holds iff there is an i and a narrowing sequence ui | ϕi �∗

R�
�1,l,r ,B�

v | ψ such that �v | ψ ∧ B � �= ∅. Furthermore, by

repeated application of the Soundness part of the Lifting Lemma 4, which uses the constructive method described in the
proof of Lemma 3, given [w ′] ∈ �v |ψ ∧ B � we can effective find a [w] ∈ �ui | ϕi � such that [w] →∗

C
R�

�1,l,r

[w ′]. �

References

[1] P. Abdulla, B. Jonsson, P. Mahata, J. d’Orso, Regular tree model checking, in: Computer Aided Verification, Springer, 2002, pp. 452–466.
[2] E. Althaus, E. Kruglov, C. Weidenbach, Superposition modulo linear arithmetic SUP(LA), in: S. Ghilardi, R. Sebastiani (Eds.), FroCos, in: Lecture Notes in

Computer Science, vol. 5749, Springer, 2009, pp. 84–99.
[3] R. Alur, C. Courcoubetis, T.A. Henzinger, P.H. Ho, Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems, in:

R. Grossman, A. Nerode, A. Ravn, H. Rischel (Eds.), Workshop on Theory of Hybrid Systems, in: LNCS, vol. 739, Springer, 1993, pp. 209–229.
[4] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235.
[5] R. Alur, P. Madhusudan, Adding nesting structure to words, J. ACM 56 (3) (2009).
[6] A. Armando, J. Mantovani, L. Platania, Bounded model checking of software using SMT solvers instead of SAT solvers, in: A. Valmari (Ed.), Model

Checking Software, Proceedings of the 13th International SPIN Workshop, Vienna, Austria, March 30 - April 1, 2006, in: Lecture Notes in Computer
Science, vol. 3925, Springer, 2006, pp. 146–162.

[7] A. Arusoaie, D. Lucanu, V. Rusu, Symbolic execution based on language transformation, Comput. Lang. Syst. Struct. 44 (2015) 48–71.
[8] M. Ayala-Rincón, Expressiveness of Conditional Equational Systems with Built-in Predicates, Ph.D. thesis, Universität Kaiserslauten, 1993.

http://refhub.elsevier.com/S2352-2208(18)30168-8/bib616264756C6C6132303032726567756C6172s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F66726F636F732F416C74686175734B573039s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F66726F636F732F416C74686175734B573039s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6879627269647331s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6879627269647331s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib616C757239347468656F7279s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F6A61636D2F416C75724D3039s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib61726D616E646F32303036626F756E646564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib61726D616E646F32303036626F756E646564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib61726D616E646F32303036626F756E646564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F636C2F417275736F6169654C523135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6179616C612D706864s1

38 J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483
[9] K. Bae, S. Escobar, J. Meseguer, Abstract logical model checking of infinite-state systems using narrowing, in: Rewriting Techniques and Applications,
RTA’13, in: LIPIcs, vol. 21, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013, pp. 81–96.

[10] K. Bae, J. Meseguer, Infinite-state model checking of LTLR formulas using narrowing, in: Proc. WRLA 2014, in: LNCS, vol. 8663, Springer, 2014,
pp. 113–129.

[11] K. Bae, C. Rocha, Guarded terms for rewriting modulo SMT, in: Formal Aspects of Component Software – Proceedings of the 14th International Confer-
ence, FACS 2017, Braga, Portugal, October 10-13, 2017, 2017, pp. 78–97.

[12] J. Bergstra, J. Tucker, Characterization of computable data types by means of a finite equational specification method, in: J.W. de Bakker, J. van Leeuwen
(Eds.), Automata, Languages and Programming, Seventh Colloquium, in: LNCS, vol. 81, Springer-Verlag, 1980, pp. 76–90.

[13] D. Beyer, M.E. Keremoglu, Cpachecker: a tool for configurable software verification, in: Proc CAV 2011, in: LNCS, vol. 6806, Springer, 2011, pp. 184–190.
[14] A. Bouajjani, Languages, rewriting systems, and verification of infinite-state systems, Autom. Lang. Program. (2001) 24–39.
[15] A. Bouajjani, J. Esparza, Rewriting models of boolean programs, in: Term Rewriting and Applications, 2006, pp. 136–150.
[16] A. Bouajjani, B. Jonsson, M. Nilsson, T. Touili, Regular model checking, in: Computer Aided Verification, Springer, 2000, pp. 403–418.
[17] A. Bouhoula, M. Rusinowitch, Implicit induction in conditional theories, J. Autom. Reason. 14 (1995) 189–235.
[18] M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta, nuXmv 1.0 User Manual, Tech. Rep.,

FBK, 2014.
[19] R. Bruni, J. Meseguer, Semantic foundations for generalized rewrite theories, Theor. Comput. Sci. 360 (1–3) (2006) 386–414.
[20] A. Cholewa, S. Escobar, J. Meseguer, Constrained narrowing for conditional equational theories modulo axioms, Sci. Comput. Program. 112 (2015) 24–57.
[21] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, HyComp: an SMT-based model checker for hybrid systems, in: Proc. TACAS 2015, in: LNCS, vol. 9035,

Springer, 2015, pp. 52–67.
[22] Ştefan Ciobâcă, A. Arusoaie, D. Lucanu, Unification modulo builtins, in: Logic, Language, Information, and Computation – Proceedings of the 25th

International Workshop, WoLLIC 2018, Bogota, Colombia, July 24-27, 2018, in: LNCS, vol. 10944, Springer, 2018, pp. 179–195.
[23] Ştefan Ciobâcă, D. Lucanu, A coinductive approach to proving reachability properties in logically constrained term rewriting systems, in: Proc. IJCAR

2018, in: Lecture Notes in Computer Science, vol. 10900, Springer, 2018, pp. 295–311.
[24] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet, C. Talcott, All About Maude – A High-Performance Logical Framework, LNCS, vol. 4350,

Springer, 2007.
[25] H. Comon, Equational formulas in order-sorted algebras, in: Proc. ICALP’90, in: LNCS, vol. 443, Springer, 1990, pp. 674–688.
[26] H. Comon, C. Delor, Equational formulae with membership constraints, Inf. Comput. 112 (2) (1994) 167–216.
[27] H. Comon, R. Nieuwenhuis, Induction=i-axiomatization+first-order consistency, Inf. Comput. 159 (1–2) (2000) 151–186.
[28] H. Comon-Lundth, S. Delaune, The finite variant property: how to get rid of some algebraic properties, in: Proc RTA’05, in: LNCS, vol. 3467, Springer,

2005, pp. 294–307.
[29] L. Cordeiro, B. Fischer, J. Marques-Silva, SMT-based bounded model checking for embedded ANSI-c software, in: ASE, IEEE, 2009, pp. 137–148.
[30] G. Delzanno, A. Podelski, Constraint-based deductive model checking, Int. J. Softw. Tools Technol. Transf. 3 (3) (2001) 250–270.
[31] N. Dershowitz, J.P. Jouannaud, Rewrite systems, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B, North-Holland, 1990,

pp. 243–320.
[32] E. Dijkstra, C. Scholten, Petri Nets, Springer-Verlag, 1990.
[33] F. Durán, J. Meseguer, On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories, J. Log. Algebraic Program. 81 (2012)

816–850.
[34] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer, 1985.
[35] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: cryptographic protocol analysis modulo equational properties, in: Foundations of Security Analysis

and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, in: LNCS, vol. 5705, Springer, 2009, pp. 1–50.
[36] S. Escobar, C. Meadows, J. Meseguer, S. Santiago, State space reduction in the Maude-NRL protocol analyzer, Inf. Comput. 238 (2014) 157–186.
[37] S. Escobar, C. Meadows, J. Meseguer, S. Santiago, Symbolic protocol analysis with disequality constraints modulo equational theories, in: Programming

Languages with Applications to Biology and Security – Essays in Honour of Pierpaolo Degano on the Occasion of His 65th Birthday, in: LNCS, vol. 9465,
Springer, 2015, pp. 238–261.

[38] S. Escobar, J. Meseguer, Symbolic model checking of infinite-state systems using narrowing, in: Proc. RTA, in: Lecture Notes in Computer Science,
vol. 4533, 2007, pp. 153–168.

[39] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and optimal variant termination, J. Log. Algebraic Program. 81 (2012) 898–928.
[40] S. Falke, Term Rewriting with Built-In Numbers and Collection Data Structures, Ph.D. thesis, University of New, Mexico, 2009.
[41] S. Falke, D. Kapur, Dependency pairs for rewriting with built-in numbers and semantic data structures, in: 19th International Conference on Rewriting

Techniques and Applications, in: Lecture Notes in Computer Science, vol. 5117, Springer, Berlin, Heidelberg, 2008, pp. 94–109.
[42] S. Falke, D. Kapur, Operational termination of conditional rewriting with built-in numbers and semantic data structures, Electron. Notes Theor. Comput.

Sci. 237 (2009) 75–90.
[43] S. Falke, D. Kapur, Rewriting induction + linear arithmetic = decision procedure, in: Proc. IJCAR 2012, in: LNCS, vol. 7364, Springer, 2012, pp. 241–255.
[44] K. Futatsugi, Fostering proof scores in CafeOBJ, in: Proc. ICFEM 2010, in: LNCS, vol. 6447, Springer, 2010, pp. 1–20.
[45] M. Ganai, A. Gupta, Accelerating high-level bounded model checking, in: 2006 IEEE/ACM International Conference on Computer Aided Design, Nov

2006, pp. 794–801.
[46] M. Ganai, A. Gupta, Completeness in SMT-based BMC for software programs, in: DATE, IEEE, 2008, pp. 831–836.
[47] H. Ganzinger, R. Nieuwenhuis, Constraints and theorem proving, in: Constraints in Computational Logics: Theory and Applications, International Sum-

mer School, CCL’99, Gif-sur-Yvette, France, September 5-8, 1999, Revised Lectures, in: Lecture Notes in Computer Science, vol. 2002, Springer, 1999,
pp. 159–201.

[48] T. Genet, V. Tong, Reachability analysis of term rewriting systems with Timbuk, in: Logic for Programming, Artificial Intelligence, and Reasoning,
Springer, 2001, pp. 695–706.

[49] S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli, Towards SMT model checking of array-based systems, in: Automated Reasoning, Proceedings of the 4th
International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, in: Lecture Notes in Computer Science, vol. 5195, Springer, 2008,
pp. 67–82.

[50] S. Ghilardi, S. Ranise, MCMT: a model checker modulo theories, in: Proc. Automated Reasoning, 5th International Joint Conference, IJCAR 2010, in:
Lecture Notes in Computer Science, vol. 6173, Springer, 2010, pp. 22–29.

[51] J. Goguen, J. Meseguer, Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations, Theor.
Comput. Sci. 105 (1992) 217–273.

[52] A. Gurfinkel, T. Kahsai, A. Komuravelli, J.A. Navas, The seahorn verification framework, in: Proc. CAV 2015, Part I, in: LNCS, vol. 9206, Springer, 2015,
pp. 343–361.

[53] R. Gutiérrez, J. Meseguer, C. Rocha, Order-sorted equality enrichments modulo axioms, Sci. Comput. Program. 99 (2015) 235–261.
[54] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, J. Log. Program. 19/20 (1994) 503–581.
[55] J.P. Jouannaud, H. Kirchner, Completion of a set of rules modulo a set of equations, SIAM J. Comput. 15 (November 1986) 1155–1194.

http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6261652D6E6172726F772D636865636Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6261652D6E6172726F772D636865636Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6261652D6E6172726F772D6C746C722D636865636Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6261652D6E6172726F772D6C746C722D636865636Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F66616373322F426165523137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F66616373322F426165523137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib62743830s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib62743830s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F42657965724B3131s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib626F75616A6A616E69323030316C616E677561676573s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib626F75616A6A616E6932303036726577726974696E67s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib626F75616A6A616E6932303030726567756C6172s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib626F75686F756C612D727573696E6F7769746368s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6E75586D762D6D616E75616Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6E75586D762D6D616E75616Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6272756E692D6D657365677565722D746373s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib636F6E646974696F6E616C2D6E6172726F77696E672D534350s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F74616361732F43696D61747469474D543135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F74616361732F43696D61747469474D543135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F776F6C6C69632F43696F62616361414C3138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F776F6C6C69632F43696F62616361414C3138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F43696F626163614C3138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F43696F626163614C3138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D617564652D626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D617564652D626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6963616C702F436F6D6F6E3930s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F69616E64632F436F6D6F6E443934s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F69616E64632F436F6D6F6E4E3030s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib636F6D6F6E2D64656C61756E65s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib636F6D6F6E2D64656C61756E65s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib636F72646569726F32303039736D74s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F737474742F44656C7A616E6E6F503031s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib64657273686F7769747A2D6A6F75616E6E617564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib64657273686F7769747A2D6A6F75616E6E617564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib64696A737472612D7363686F6C74656E2D626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6372632D616C70s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6372632D616C70s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib65687269672D6D616872s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D617564652D6E70612D7475746F7269616Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D617564652D6E70612D7475746F7269616Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F69616E64632F4573636F6261724D4D533134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib646567616E6F2D66657374s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib646567616E6F2D66657374s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib646567616E6F2D66657374s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6573636F6261722D6D657365677565722D7274613037s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6573636F6261722D6D657365677565722D7274613037s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib76617269616E742D4A4C4150s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D746865736973s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D7274613038s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D7274613038s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D7465723039s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D7465723039s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib66616C6B652D6465633132s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib4675746174737567693130s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67616E616932303036616363656C65726174696E67s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67616E616932303036616363656C65726174696E67s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67616E616932303038636F6D706C6574656E657373s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F63636C2F47616E7A696E6765724E3939s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F63636C2F47616E7A696E6765724E3939s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F63636C2F47616E7A696E6765724E3939s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67656E65743230303172656163686162696C697479s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67656E65743230303172656163686162696C697479s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F4768696C617264694E525A3038s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F4768696C617264694E525A3038s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F4768696C617264694E525A3038s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F4768696C61726469523130s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F636164652F4768696C61726469523130s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6F736131s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6F736131s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F47757266696E6B656C4B4B4E3135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F47757266696E6B656C4B4B4E3135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F7363702F47757469657272657A4D523135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F6A6C702F4A61666661724D3934s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6A6F75616E6E6175642D686B697263686E6572s1

J. Meseguer / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100483 39
[56] T. Kahsai, C. Tinelli, PKind: a parallel k-induction based model checker, in: Proc. PDMC 2011, in: EPTCS, vol. 72, 2011, pp. 55–62.
[57] H. Kirchner, C. Ringeissen, Combining symbolic constraint solvers on algebraic domains, J. Symb. Comput. 18 (2) (1994) 113–155.
[58] H. Kirchner, C. Ringeissen, Constraint solving by narrowing in combined algebraic domains, in: Logic Programming, Proceedings of the Eleventh Inter-

national Conference on Logic Programming, MIT Press, 1994, pp. 617–631.
[59] K. Kirchner, H. Kirchner, M. Rusinowitch, Deduction with symbolic constraints, Rev. Intell. Artif. 4 (3) (1990) 9–52.
[60] C. Kop, N. Nishida, Term rewriting with logical constraints, in: 9th International Symposium on Frontiers of Combining Systems, in: Lecture Notes in

Computer Science, vol. 8152, Springer, 2013, pp. 343–358.
[61] C. Kop, N. Nishida, Automatic constrained rewriting induction towards verifying procedural programs, in: J. Garrigue (Ed.), Programming Languages and

Systems – Proceedings of the 12th Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, in: Lecture Notes in Computer Science, vol. 8858,
Springer, 2014, pp. 334–353.

[62] G. Kreisel, J. Krivine, Mathematical Logic, North-Holland, 1967.
[63] D. Lucanu, V. Rusu, A. Arusoaie, A generic framework for symbolic execution: a coinductive approach, J. Symb. Comput. 80 (2017) 125–163.
[64] D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak, Verifying reachability-logic properties on rewriting-logic specifications, in: Logic, Rewriting, and Concurrency

– Essays Dedicated to José Meseguer on the Occasion of His 65th Birthday, in: LNCS, vol. 9200, Springer, 2015, pp. 451–474.
[65] S. Lucas, J. Meseguer, Normal forms and normal theories in conditional rewriting, J. Log. Algebraic Methods Program. 85 (1) (2016) 67–97.
[66] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, 1971.
[67] E. Manes, Algebraic Theories, Graduate Texts in Mathematics, vol. 26, Springer, 1976.
[68] J. Meseguer, P. Thati, Symbolic reachability analysis using narrowing and its application to the verification of cryptographic protocols, High.-Order

Symb. Comput. 20 (1–2) (2007) 123–160.
[69] J. Meseguer, General logics, in: H.D.E., et al. (Eds.), Logic Colloquium ’87, North-Holland, 1989, pp. 275–329.
[70] J. Meseguer, Membership algebra as a logical framework for equational specification, in: Proc. WADT’97, in: LNCS, vol. 1376, Springer, 1998, pp. 18–61.
[71] J. Meseguer, Strict coherence of conditional rewriting modulo axioms, Theor. Comput. Sci. 672 (2017) 1–35.
[72] J. Meseguer, Generalized rewrite theories and coherence completion, in: V. Rusu (Ed.), Proc. Rewriting Logic and Its Applications – 12th International

Workshop, WRLA 2018, in: Lecture Notes in Computer Science, vol. 11152, Springer, 2018, pp. 164–183.
[73] J. Meseguer, Variant-based satisfiability in initial algebras, Sci. Comput. Program. 154 (2018) 3–41.
[74] J. Meseguer, J. Goguen, Initiality, induction and computability, in: M. Nivat, J. Reynolds (Eds.), Algebraic Methods in Semantics, Cambridge University

Press, 1985, pp. 459–541.
[75] J. Meseguer, M. Palomino, N. Martí-Oliet, Equational abstractions, Theor. Comput. Sci. 403 (2–3) (2008) 239–264.
[76] J. Meseguer, S. Skeirik, Equational formulas and pattern operations in initial order-sorted algebras, Form. Asp. Comput. 29 (3) (2017) 423–452.
[77] A. Milicevic, H. Kugler, Model checking using SMT and theory of lists, in: NASA 3rd International Symposium on Formal Methods, in: Lecture Notes in

Computer Science, vol. 6617, Springer, 2011, pp. 282–297.
[78] B. Moore, Coinductive Program Verification, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2016, http://hdl .handle .net /2142 /95372.
[79] L.M. de Moura, S. Owre, H. Rueß, J.M. Rushby, N. Shankar, M. Sorea, A. Tiwari, SAL 2, in: Proc. CAV 2004, in: LNCS, vol. 3114, Springer, 2004,

pp. 496–500.
[80] H. Ohsaki, H. Seki, T. Takai, Recognizing boolean closed a-tree languages with membership conditional rewriting mechanism, in: Rewriting Techniques

and Applications, Springer, 2003, pp. 483–498.
[81] G.E. Peterson, M.E. Stickel, Complete sets of reductions for some equational theories, J. Assoc. Comput. Mach. 28 (2) (1981) 233–264.
[82] A. Podelski, Model checking as constraint solving, in: Static Analysis, Proceedings of the 7th International Symposium, SAS 2000, Santa Barbara, CA,

USA, June 29 - July 1, 2000, in: Lecture Notes in Computer Science, vol. 1824, Springer, 2000, pp. 22–37.
[83] C. Rocha, J. Meseguer, Proving safety properties of rewrite theories, in: Proc. CALCO 2011, in: LNCS, vol. 6859, Springer, 2011, pp. 314–328.
[84] C. Rocha, Symbolic Reachability Analysis for Rewrite Theories, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2012.
[85] C. Rocha, J. Meseguer, Mechanical analysis of reliable communication in the alternating bit protocol using the Maude invariant analyzer tool, in: Speci-

fication, Algebra, and Software – Essays Dedicated to Kokichi Futatsugi, in: Lecture Notes in Computer Science, vol. 8373, Springer, 2014, pp. 603–629.
[86] C. Rocha, J. Meseguer, C.A. Muñoz, Rewriting modulo SMT and open system analysis, in: Proc. Rewriting Logic and Its Applications – 10th International

Workshop, WRLA 2014, in: Lecture Notes in Computer Science, vol. 8663, Springer, 2014, pp. 247–262.
[87] C. Rocha, J. Meseguer, C.A. Muñoz, Rewriting modulo SMT and open system analysis, J. Log. Algebraic Methods Program. 86 (2017) 269–297.
[88] T. Rybina, A. Voronkov, A logical reconstruction of reachability, in: Perspectives of Systems Informatics, 5th International Andrei Ershov Memorial

Conference, Revised Papers, PSI 2003, Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, in: Lecture Notes in Computer Science, vol. 2890, Springer,
2003, pp. 222–237.

[89] J.R. Shoenfield, Degrees of Unsolvability, North-Holland, 1971.
[90] S. Skeirik, J. Meseguer, Metalevel algorithms for variant satisfiability, J. Log. Algebraic Methods Program. 96 (2018) 81–110.
[91] S. Skeirik, A. Stefanescu, J. Meseguer, A constructor-based reachability logic for rewrite theories, in: Proc. Logic-Based Program Synthesis and Transfor-

mation – 27th International Symposium, LOPSTR 2017, in: Lecture Notes in Computer Science, vol. 10855, Springer, 2017, pp. 201–217.
[92] A. Stefanescu, Ştefan Ciobâcă, R. Mereuta, B.M. Moore, T. Serbanuta, G. Rosu, All-path reachability logic, in: Proc. RTA-TLCA 2014, in: LNCS, vol. 8560,

Springer, 2014, pp. 425–440.
[93] A. Stefanescu, D. Park, S. Yuwen, Y. Li, G. Rosu, Semantics-based program verifiers for all languages, in: Proc. OOPSLA 2016, ACM, 2016, pp. 74–91.
[94] A. Tiwari, Hybrids al relational abstracter, in: Proc. CAV 2012, in: LNCS, vol. 7358, Springer, 2012, pp. 725–731.
[95] M. Veanes, N. Bjørner, A. Raschke, An SMT approach to bounded reachability analysis of model programs, in: 28th IFIP WG 6.1 International Conference

on Formal Techniques for Networked and Distributed Systems, Springer, 2008, pp. 53–68.
[96] G. Vidal, Closed symbolic execution for verifying program termination, in: IEEE 12th International Working Conference on Source Code Analysis and

Manipulation, Sept 2012, pp. 34–43.
[97] G. Vidal, Symbolic execution as a basis for termination analysis, Sci. Comput. Program. 102 (2015) 142–157, http://www.sciencedirect .com /science /

article /pii /S0167642315000271.
[98] P. Viry, Equational rules for rewriting logic, Theor. Comput. Sci. 285 (2002) 487–517.
[99] D. Walter, S. Little, C. Myers, Bounded model checking of analog and mixed-signal circuits using an SMT solver, in: 5th International Symposium on

Automated Technology for Verification and Analysis, Springer, Berlin, Heidelberg, 2007, pp. 66–81.

http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131312D30333732s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6B697263686E65723934s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F69636C702F4B697263686E6572523934s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F69636C702F4B697263686E6572523934s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib4B697263686E6572527573696E6F77697463683930s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6B6F702D636F6E733133s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6B6F702D636F6E733133s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F61706C61732F4B6F70303134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F61706C61732F4B6F70303134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F61706C61732F4B6F70303134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6B72656973656C2D6B726976696E65s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F6A73632F4C7563616E7552413137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F62697274686461792F4C7563616E7552414E3135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F62697274686461792F4C7563616E7552414E3135s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6C756361732D6D657365677565722D6E6F726D616C2D74682D4A4C414D50s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib4D61634C616E65s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib4D616E6573s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6E6172726F77696E672D686F7363s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6E6172726F77696E672D686F7363s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib67656E6572616Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib7461727175696E6961s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A6A6F75726E616C732F7463732F4D657365677565723137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F77726C612F4D657365677565723138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F77726C612F4D657365677565723138s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib7661722D7361742D736370s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D673835s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D673835s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6571756174696F6E616C2D6162737472616374696F6E2D746373s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D657365677565722D736B656972696B2D7061747465726E732D464143s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D696C696365766963323031316D6F64656Cs1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6D696C696365766963323031316D6F64656Cs1
http://hdl.handle.net/2142/95372
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F4D6F7572614F52525353543034s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F4D6F7572614F52525353543034s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6F6873616B69323030337265636F676E697A696E67s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib6F6873616B69323030337265636F676E697A696E67s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib5065746572736F6E537469636B656C3831s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F7361732F506F64656C736B693030s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F7361732F506F64656C736B693030s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib726F6368612D6D657365677565722D63616C636F3131s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib726F6368612D746865736973s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F62697274686461792F526F6368614D3134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F62697274686461792F526F6368614D3134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib72772D534D54s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib72772D534D54s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib72772D534D542D4A4C414D50s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F657273686F762F527962696E61563033s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F657273686F762F527962696E61563033s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F657273686F762F527962696E61563033s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib73686F656E6669656C642D64656772656573s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib736B656972696B2D6D657365677565722D7661722D7361742D4A4C414D50s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6C6F707374722F536B656972696B534D3137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6C6F707374722F536B656972696B534D3137s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F7274612F53746566616E65736375434D4D53523134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F7274612F53746566616E65736375434D4D53523134s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6F6F70736C612F53746566616E6573637550594C523136s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib44424C503A636F6E662F6361762F5469776172693132s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib7665616E657332303038736D74s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib7665616E657332303038736D74s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib766964616C2D636C6F73656432303132s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib766964616C2D636C6F73656432303132s1
http://www.sciencedirect.com/science/article/pii/S0167642315000271
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib766972792D746373s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib77616C74657232303037626F756E646564s1
http://refhub.elsevier.com/S2352-2208(18)30168-8/bib77616C74657232303037626F756E646564s1
http://www.sciencedirect.com/science/article/pii/S0167642315000271

	Generalized rewrite theories, coherence completion, and symbolic methods
	1 Introduction
	2 Preliminaries on order-sorted algebra and variants
	3 Generalized rewrite theories and coherence
	3.1 The coherence problem

	4 Coherence completion of generalized rewrite theories
	4.1 The R ->Rl transformation
	4.2 The R ->RΣ1 transformation
	4.3 The R ->R ΩΣ1,l,r transformation

	5 Constrained constructor pattern predicates
	5.1 Making pattern predicate operations computable
	5.2 Some basic properties and pattern predicate subsumption
	5.3 Relaxing the freeness modulo BΩ requirement

	6 Symbolic methods for generalized rewrite theories
	6.1 Universal reachability by generalized rewriting
	6.2 Narrowing-based existential reachability analysis
	6.3 Narrowing-based invariant veriﬁcation

	7 Related work and conclusions
	Acknowledgements
	Appendix A Proofs of theorems
	References

