
Journal of Logical and Algebraic Methods in Programming 110 (2020) 100497
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Programming and symbolic computation in Maude

Francisco Durán a, Steven Eker b, Santiago Escobar c, Narciso Martí-Oliet d,∗, 
José Meseguer e, Rubén Rubio d, Carolyn Talcott b

a Universidad de Málaga, Spain
b SRI International, CA, USA
c Universitat Politècnica de València, Spain
d Universidad Complutense de Madrid, Spain
e University of Illinois at Urbana-Champaign, IL, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2019
Received in revised form 30 September 
2019
Accepted 30 September 2019
Available online 8 October 2019

Keywords:
Maude and rewriting logic
Strategies
External objects
Unification and narrowing
Symbolic model checking
Meta-interpreters

Rewriting logic is both a flexible semantic framework within which widely different 
concurrent systems can be naturally specified and a logical framework in which widely 
different logics can be specified. Maude programs are exactly rewrite theories. Maude 
has also a formal environment of verification tools. Symbolic computation is a powerful 
technique for reasoning about the correctness of concurrent systems and for increasing 
the power of formal tools. We present several new symbolic features of Maude that 
enhance formal reasoning about Maude programs and the effectiveness of formal tools. 
They include: (i) very general unification modulo user-definable equational theories, and 
(ii) symbolic reachability analysis of concurrent systems using narrowing. The paper does 
not focus just on symbolic features: it also describes several other new Maude features, 
including: (iii) Maude’s strategy language for controlling rewriting, and (iv) external objects
that allow flexible interaction of Maude object-based concurrent systems with the external 
world. In particular, meta-interpreters are external objects encapsulating Maude interpreters 
that can interact with many other objects. To make the paper self-contained and give 
a reasonably complete language overview, we also review the basic Maude features for 
equational rewriting and rewriting with rules, Maude programming of concurrent object 
systems, and reflection. Furthermore, we include many examples illustrating all the Maude 
notions and features described in the paper.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

What is Maude? The Maude book’s title [28] describes it as a High-Performance Logical Framework and adds: How to Specify, 
Program and Verify Systems in Rewriting Logic. Maude is indeed a declarative programming language based on rewriting logic 
[90,19,98].

So, what is rewriting logic? It is a logic ideally suited to specify and execute computational systems in a simple and 
natural way. Since nowadays most computational systems are concurrent, rewriting logic is particularly well suited to specify 
concurrent systems without making any a priori commitments about the model of concurrency in question, which can be 
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synchronous or asynchronous, and can vary widely in its shape and nature: from a Petri net [128] to a process calculus 
[134,126], from an object-based system [92] to asynchronous hardware [75], from a mobile ad hoc network protocol [79]
to a cloud-based storage system [14], from a web browser [21,122] to a programming language with threads [107,108], 
from a distributed control system [105,11] to a model of mammalian cell pathways [54,130], and so on. And all without 
any encoding: what you see and get is a direct definition of the system itself, not some crazy Turing machine or Petri net 
encoding of it. All this means that rewriting logic is a flexible semantic framework to define and program computational 
systems. But since in rewriting logic

Computation = Deduction

the exact same flexibility can be used to specify any logic in rewriting logic, used now as a logical framework. Indeed, a logic’s 
inference system can be naturally specified as a rewrite theory whose (possibly conditional) rewrite rules are exactly the 
logic’s inference rules. Again, logics as different as linear logic, first-order logic, various modal logics, or all the higher-order 
logics in Barendregt’s lambda cube can be specified in rewriting logic (and mechanized in Maude) without any encoding
[83,127,112,98]. This explains the “Logical Framework” part in the Maude book’s title.

What about the “High-Performance” description? You should not take our word for it. Instead, you may wish to take 
a look at the paper [62], where a thorough benchmarking by H. Garavel and his collaborators at INRIA Rhône-Alpes of 
a wide range of functional and rule-based declarative languages based on a large suite of benchmarks expressed in a 
language-independent manner and mapped into each language is reported. Although Maude is an interpreted language, it 
ranks second in overall performance for that suite, closely after Haskell.

What are Maude Programs? Rewrite theories. A rewrite theory is a triple R = (�, E, R), where (�, E) is an equational 
theory, with function symbols � and equations1 E , specifying a concurrent system’s states as an algebraic data type, and 
R is a set of rewrite rules that specify the local concurrent transitions that the concurrent system can perform. In Maude 
this is declared as a system module with syntax mod (�, E, R) endm. The case when R = ∅ gives rise to Maude’s functional 
sublanguage of functional modules, which are declared with syntax fmod (�, E) endfm and specify the algebraic data type 
defined by E for the function symbols in �. Of course, this means that when writing and verifying Maude programs we 
never leave the realm of mathematics. This explains the qualification: “How to Specify, Program and Verify Systems in 
Rewriting Logic” in Maude book’s title. Maude is not just a language: it has a formal environment of verification tools, some 
internal to the language and others built as language extensions (more on this in Sections 3, 7, and 9).

Why Another Paper on Maude? Maude is in her mid 20s. The first conference paper on Maude appeared in 1996 [29]. 
This was expanded into the 2002 journal paper [27], which to this date remains the most cited journal reference for the 
language. Important new advances were reported in the 2007 Maude book [28], which is the most highly cited reference on 
Maude to date. But a lot has happened since 2007. From time to time we have reported on new advances in a piecemeal way 
in a sequence of tool papers; but they are both quite brief and scattered over numerous publications: no unified account of 
the present state of Maude actually exists. That is why we decided to write this paper.

What is it like? On the one hand repetition of material already available in previous publications should be avoided; 
but on the other hand this paper should be a good entry point to learn about Maude as it is in 2019 without assuming 
prior acquaintance with Maude. Therefore, we have tried to strike a balance between: (i) making the paper self-contained 
and providing a reasonably complete overview of the language; and (ii) making sure that all the important new features
now available in Maude are explained and illustrated. The way this balance between generality and novelty is attempted 
is reflected in the paper’s organization. The most basic introduction to the language is given in Section 2 on functional 
modules and Section 3 on system modules. The first important new feature is Maude’s strategy language, treated in Section 4. 
Section 5 on object-based programming is a mixture of old and new: on the one hand we introduce new readers to the basic 
ideas on how distributed object systems are programmed declaratively in Maude. On the other hand we explain several 
important new features on how Maude objects can now interact with various external objects. Another mixture of old and 
new is provided by Section 8 on reflection and meta-interpreters: reflection is a long-standing and crucial feature of both 
rewriting logic and Maude; but meta-interpreters are an entirely new feature. A very important additional theme with a 
host of new language features is reflected in the paper’s title, namely, Maude’s current support for symbolic computation. 
This theme is developed along three sections: Section 6 discusses unification, variants, and equational narrowing features; 
Section 7 discusses narrowing-based symbolic reachability analysis; and Section 9.1 discusses symbolic reasoning tools and 
applications.

1.1. Features

Let us summarize those Maude’s features considered in this paper.

1 As we explain in Section 2, the equational theory may also contain membership axioms specifying the typing of some expressions. For the moment think 
of E as containing both.
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Strategies. Most concurrent systems are intrinsically nondeterministic, so that different transitions may lead the system into 
widely different states. The obvious consequence is that an expression t in a system module can be evaluated by its rules R
in many different ways. For example, the rewrite theory (�, E, R) may describe the game of chess, or the inference system 
of a theorem prover. But many chess moves may be stupid ones, and many inference steps may be useless. In both cases 
we need a strategy to apply the rules R in a way that achieves our intended goals. This is what Maude’s strategy language, 
explained in Section 4, makes possible.

Specification and Deployment of Concurrent Object Systems. Although, as already mentioned, Maude can naturally express 
a wide variety of concurrent systems, many such systems are best expressed as collections of concurrent objects which 
communicate with each other by message passing. Section 5 explains how concurrent object systems can be programmed 
declaratively in Maude. But this leaves open two issues: (i) the object-based view, by its very nature, should allow inter-
actions with any kind of object, including the user seen as an “object,” and (ii) the Maude interpreter runs on a single 
machine, therefore the concurrent system defined by the program can be simulated and analyzed in a Maude interpreter; 
but how can it be deployed as a distributed system? Both issues are addressed by means of several kinds of external ob-
jects with which standard Maude objects can interact. In particular, using socket external objects, Maude programs can be 
deployed as distributed systems running on several machines.

Reflection and Meta-Interpreters. Rewriting logic is a reflective logic. This means that its meta-theory, including notions 
such as theory and term, can be represented as data at the so-called object level of the logic in a universal theory. It also 
means that such a universal theory, like in the case of universal Turing machines, can simulate any other theory, including 
itself. This is extremely powerful for (meta-)programming purposes and is efficiently supported by Maude’s META-LEVEL
module. Section 8 explains reflection, and also illustrates how meta-programming can be used to easily build advanced new 
tools such as an Eqlog [64] functional-logic programming interpreter. It also explains a very powerful new reflective feature, 
namely, meta-interpreters, which open the possibility of creating and interacting in a reflective manner with a hierarchy of 
Maude interpreters as external objects.

Maude and Symbolic Computation. Because Maude is a programming language and a logical framework in which many 
different logics and formal tools can be mechanized and has itself a formal environment of verification tools, support for 
symbolic reasoning is very important both for advanced formal reasoning about Maude programs and to use Maude as a 
formal meta-tool to build many other tools in other logics. From 2007 to the present, a sustained effort has been made 
to endow Maude with powerful symbolic reasoning capabilities. At the equational logic level, they focus around the topic 
of Section 6, namely, unification modulo an equational theory, that is, solving systems of equations modulo an equational 
theory. Maude’s unification features are extremely general in three orthogonal dimensions, corresponding to three aspects 
of an equational theory, which in Maude can have the form (�, E ∪ B), where � is an order-sorted signature (more on 
this in Section 2), B are common equational axioms such as associativity and/or commutativity and/or identity, and E
are equations that are assumed convergent (more on this in Section 2) modulo B . The first dimension of generality is �: 
since order-sorted signatures are strictly more general than many-sorted ones, which are way more general than unsorted 
ones, order-sorted unification algorithms are much more general than the usual unsorted ones. The second dimension 
is unification modulo axioms B , which in Maude can be any combination of associativity and/or commutativity and/or 
identity axioms. The third dimension of generality is support for order-sorted unification modulo any theory E ∪ B , where 
the axioms B are as explained and the equations E are convergent modulo B . Some very hard problems had to be solved to 
make E ∪ B-unification practical and to characterize the cases when it terminates. They were solved in [60] thanks to the 
notion of variant, as also explained in Section 6.

At the rewriting logic level, Section 7 explains how the just-described support for unification modulo E ∪ B becomes 
a key symbolic lever to support narrowing-based symbolic reachability analysis for a rewrite theory (system module) R =
(�, E ∪ B, R), where E ∪ B has the so-called finite variant property [34], ensuring that E ∪ B-unification terminates. Such 
reachability analysis provides a powerful form of symbolic model checking for R, where possibly infinite sets of states are 
described by symbolic expressions. Using the new symbolic reasoning features described in Sections 6–7, many symbolic 
reasoning tools can be developed covering many applications. Section 9.1 focuses on those tools and applications most 
directly related to Maude itself; but similar formal tools can likewise be developed (and are developed) for many other 
logics [98].

Core Maude vs. Full Maude. Maude is also referred to as Core Maude. This is done to distinguish it from Full Maude. But what 
is Full Maude? What Maude is not yet but will be. Most new features presented in this paper—from the strategy language to 
variants, from unification algorithms to symbolic model checking, from object-oriented features to parameterized modules—
first cut their teeth as features prototyped in Full Maude. How does Full Maude work? By reflection. That is, Full Maude is 
a reflective Maude program extending Maude itself with new language features [28]. As explained in [48], since many Maude 
verification tools need to manipulate Maude modules reflectively and should be well integrated with Maude itself, they can 
be built quite easily as extensions of Full Maude. Full Maude is not directly discussed in this paper; but, as Alfred Hitchcock 
in his movies, makes some interesting cameo appearances. A nice one takes place in Section 8.4, where we show how 
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the Eqlog [64] functional-logic language can be easily implemented using reflection and Maude’s narrowing-based symbolic 
reachability and can be given an execution environment as an extension of Full Maude.

Differences with the Conference Paper [40]. This paper is a loose and very large extension of the conference paper [40]. 
Usually one says what has been added, but that would take too long. It is much shorter to say what has been loosely 
imported from [40], namely, some of the material in the “symbolic” Sections 6–7. But even that needs a few grains of 
salt. For example, since this paper focuses on language features and what they are good for, we have omitted the detailed 
description of Maude’s order-sorted unification algorithm modulo associativity given in [40].

Examples and Maude Executables. All the examples in the paper run on Maude 3.0, which is available at http://maude .cs .
illinois .edu. The Maude code for all the examples in the paper can also be found at that site.

2. Functional modules

Maude is a declarative language based on rewriting logic; but rewriting logic has membership equational logic [95,16] as 
its functional sublogic. From the computational point of view the key difference between rewriting logic and its membership 
equational sublogic is that between: (i) the nondeterminism of rewrite theories, and (ii) the determinism of equational ones. 
That is, an equational program is a functional program in which a functional expression (called a term) is evaluated using 
the equations in the program as left-to-right rewrite rules, which are assumed confluent (see [35] and Section 2.2). If such 
an evaluation terminates, it returns a unique computed value (determinism), namely, its normal form after simplifying it with 
the (oriented) equations. Instead, a rewrite theory usually models a nondeterministic and often concurrent system, which may 
never terminate and where the notion of a computed value may be meaningless.

In this section we present Maude functional modules, which are conditional membership equational theories of the form 
(�, M ∪ E ∪ B) specifying functional programs, where: (i) � is the signature specifying: the types, here called sorts, the 
subtype, i.e., subsort, inclusions, and the function symbols and constants used in the theory; (ii) E is a collection of (possibly 
conditional) equations which are used as left-to-right rewrite rules to evaluate terms; (iii) B is a collection of equational 
axioms, such as associativity and/or commutativity and/or identity satisfied by some of the function symbols in �; such 
axioms are viewed as structural axioms, so that rewriting with the equations E is performed modulo the axioms B; and (iv) 
M is a collection of (possibly conditional) memberships, which can lower the sort of a term if a membership’s condition 
is satisfied (more on this below). In Maude, the functional module defined by (�, M ∪ E ∪ B) is declared within keywords
fmod and endfm, and is also given a name, say, FOO, so that its declaration has the form: fmod FOO is (�, M ∪ E ∪ B)

endfm.
Maude’s syntax for �, E , and M is self-explanatory: it is in essence the ASCII version of the standard textbook notation 

(see below). The structural axioms B are declared together with the function symbols satisfying such axioms. Furthermore, 
the syntax for the signature �, i.e., the names and syntactic form of the sorts, constants, and function symbols for �, is 
completely user-definable. For example, if Nat is the name we have chosen for the sort of natural numbers, we may choose 
any syntax we wish to declare a natural number addition function in �, and, furthermore, we may declare such a function 
as enjoying some structural axioms B . Suppose that 0 and 1 have been declared as constants with the declaration:

ops 0 1 : -> Nat [ctor] .

where the ctor declaration makes it clear that the constants 0 and 1 are data constructors that will not be evaluated away 
to other values by some equations. Then, we can choose any syntax we wish for the addition function. The less imaginative 
choice is to adopt a prefix syntax, such as +(1,0), or plus(1,0). But we may wish to use the more readable infix syntax, 
so as to be able to write the term 1 + 0. Suppose we decide to give addition such an infix syntax and to declare it as 
enjoying the associativity axiom (x + y) + z = x + (y + z), the commutativity axiom x + y = y + x, and the identity axioms 
x + 0 = x = 0 + x. Then, we can give this declaration in Maude as follows:

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

where the two underbar symbols indicate where the first and second argument of the addition function must be placed 
before and after the + character. As before, the ctor declaration makes it clear that in this representation the addition 
symbol is a data constructor, which will not be evaluated away, except if one of its arguments is 0, so that the identity 
axiom can be used. That is, in this representation the natural numbers are: 0, 1, 1 + 1, . . . , 1+ n. . . +1, . . . . Instead, had we 
chosen the prefix syntax, say, plus, we would have given the alternative declaration:

op plus : Nat Nat -> Nat [ctor assoc comm id: 0] .

Order-sorted equational logic [66,95] is a very useful sublogic of membership equational logic. An order-sorted equational 
theory is a membership equational theory (�, M ∪ E ∪ B) such that M = ∅, i.e., it has the form (�, E ∪ B), where � =
((S, <), F ) consists of a partially ordered set (S, ≤) of sorts, where ≤ denotes subsort inclusion, and where F is a set of 
function symbols and constants typed with sorts in S . Function symbols in F can be subsort overloaded (also called subtype 
polymorphic). For example, we may introduce a sort NzNat of non-zero natural numbers as a subsort of Nat, declare 
instead 1 as a constant of sort NzNat, and add the additional declaration:

http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
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op _+_ : NzNat NzNat -> NzNat [ctor assoc comm id: 0] .

The only requirement is that, as done above, all subsort polymorphic function declarations must satisfy the same structural 
axioms.

Example 1. Consider the following order-sorted specification of terms in prefix form, with an arbitrary number of constant 
and function symbols, as elements of a sort Term having two subsorts, Var of variables, and NvTerm of non-variable 
terms. Assuming that we import Maude’s built-in modules NAT of natural numbers, with main sort Nat, and QID of 
quoted identifiers, with main sort Qid, both modules in protecting mode (i.e., the sorts in NAT and QID are not modified, 
but they are protected, in such an importation [28]) we can then define such a data type of terms as follows2:

fmod TERM is
protecting NAT + QID .

sort Variable .
op x{_} : Nat -> Variable [ctor] .

sorts Term NvTerm .
subsort Qid < NvTerm < Term .
subsort Variable < Term .
op _[_] : Qid NeTermList -> NvTerm [ctor prec 40] .

sort NeTermList .
subsort Term < NeTermList .
op _,_ : NeTermList NeTermList -> NeTermList [ctor assoc] .

endfm

where, since no equations have been declared (only the associativity structural axiom for non-empty lists of terms), all 
operators are data constructors. Given a term t , the least sort3 of t is denoted ls(t). For example, assuming a countable set 
of variables, say, x1, x2, . . . , xn . . . and arbitrary names for constants and function symbols, the term f (g(x3, b, x1), k(x2)) is 
here represented as the term: ’f[’g[x{3},’b,x{1}],’k[x{2}]] of least sort NvTerm. The term ’b has least sort
Qid, and x{3} has least sort Variable. But all these terms share the common supersort Term.

Note that any finite poset, and in particular the poset of sorts (S, ≤), can be viewed as the reflexive-transitive closure of a 
directed acyclic graph (DAG), and that the set of nodes of such a DAG breaks into a set of connected components. For example, 
in the signature � = ((S, ≤), F ) of the TERM module there are three connected components: (i) one involving the sort Bool, 
since the Booleans are imported by NAT, (ii) another involving the sort Nat and its subsort NzNat, and (iii) yet another in-
volving the sorts Qid, Var, NvTerm, and Term. Maude automatically adds a new so-called kind supersort at the top of each 
connected component in the poset (S, ≤) declared by the user, where kinds are indicated with a bracket notation. For this 
example, Maude will add kinds [Bool], [Nat] and [Term] at the top of each of these three components. Furthermore, 
for each function symbol, say f : s1 . . . sn → s, in � a new subsort-overloaded symbol f : [s1] . . . [sn] → [s] is also added by 
Maude at the kind level. Intuitively, terms whose least sort is a kind are viewed as error terms. For example, the least sort of 
the term ‘f[‘a][‘g[‘c,x{2}],’b] is the kind [Term]. Since ‘f[‘a] is not a quoted identifier (sort Qid), and there-
fore cannot be used as a function symbol, the operator declaration op _[_] : [Qid] [NeTermList] -> [NvTerm] 
is used to construct the term. Note that the kind of sort Term, denoted by [Term], coincides with the kind of, e.g., sort
TermList, denoted by [TermList], since Term is a subsort of TermList. This is very useful to give functional expres-
sions the benefit of the doubt, because at parse time only partial type information may be available, but as a computation 
progresses some typing problems may go away. For example, in a data type RAT of rational numbers an expression like 
3 / (2 - 7) can only be parsed with least sort [Rat], but will happily evaluate to - 3 / 5 with least sort NzRat. 
Instead, the evaluation of the term 3 / (7 - (4 + 3)) will yield the error term 3 / 0, whose least sort is [Rat].

2.1. Predicate subtyping with membership predicates

The full generality of Maude functional modules as membership equational theories can be illustrated by means of the 
following module specifying an algebraic data type of finite partial functions on the natural numbers, that is, arrays whose 
values are natural numbers. A finite partial function is just a finite relation that is single-valued on its domain of definition. 
For example, {(0, 2), (3, 0), (4, 1)} is a finite partial function, but {(0, 2), (3, 0), (3, 1), (4, 1)} is not a finite partial function, 
because 3 is mapped to both 0 and 1. Using order-sorted algebra alone, we cannot specify an algebraic data type having a 
subsort PFun < Rel exactly characterizing those finite relations that are finite partial functions; but we can do so using 
membership equational logic.

Example 2. We define in Fig. 1 a functional module PFUN of finite partial functions on the natural numbers.

2 For a discussion on attributes not explained here, such as prec, please see [24].
3 Under a simple syntactic condition on � checked by Maude, called preregularity [66] (more generally, preregularity modulo the structural axioms B

[28]), any �-term t always has a smallest possible typing with a sort called its least sort.
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fmod PFUN is
protecting NAT .
sorts Pair Magma PFun Rel Nat? .
subsorts Pair < Magma .
subsorts PFun < Rel .
subsort Nat < Nat? .
op undef : -> Nat? [ctor] .

vars I J K : Nat .
var M : Magma .
var F : PFun .
var R : Rel .

op [_,_] : Nat Nat -> Pair [ctor] .
op null : -> Magma [ctor] . *** empty magma
op _,_ : Magma Magma -> Magma [ctor assoc comm id: null] .
op {_} : Magma -> Rel [ctor] .
eq [I,K], [I,K] = [I,K] . *** idempotency
mb {null} : PFun .

cmb {[I, K], M} : PFun if def(I, {M}) = false /\ {M} : PFun .

op def : Nat Rel -> Bool . *** is key defined in relation?
eq def(I, {null}) = false .
eq def(I, {[J, K], M}) = if I == J then true else def(I, {M}) fi .

op _[_] : PFun Nat -> Nat? . *** partial function application
eq {null}[K] = undef .

ceq {[I, K], M}[J] = if I == J then K else {M}[J] fi if {[I, K], M} : PFun
.

endfm

Fig. 1. PFUN module.

A few things are worth mentioning about this example. First of all, an if-then-else operator4 with “mix-fix” syntax 
if_then_else_fi and with the obvious equational definition is added automatically by Maude to any module importing 
the BOOL module, which is always imported by default unless the user indicates otherwise [28]. Second, a built-in equality 
predicate _==_ is also automatically added by Maude for each connected component. However, neither of these built-in 
operators are really needed: the user can easily define his/her own if-then-else, as well as an equality predicate for natural 
numbers, or for many other data types (see [70]). These two built-in operators have been used in the definitions of the def
predicate and of partial function application. Third, because of the idempotency equation, all terms of sort PFun in normal 
form are finite sets of pairs, and therefore partial functions in the mathematical sense.

The key new feature used here is the use of memberships (introduced with keywords mb and cmb for, respectively, 
unconditional and conditional membership axioms) defining the sort PFun of finite partial functions as a subsort of the 
sort of finite relations Rel. We follow exactly a typewriter version of the set-theoretic description of finite relations. To 
do so, we distinguish between the finite relation itself, e.g., {(0, 2), (3, 0), (3, 1), (4, 1)} and its underlying multiset of pairs 
(0, 2), (3, 0), (3, 1), (4, 1), which we call a magma. Union of magmas is defined by the associative-commutative operator 
_,_ with identity the empty magma null. The subsort PFun < Rel is defined by memberships distinguishing two 
cases. A partial function F is either: (i) the empty relation {null}, or (ii) a relation {M} that is a partial function and 
to which a new pair [I,K] has been added, provided {M} is undefined for the input I. Of course, many other auxiliary 
functions, such as, for example, array updating, relation union and intersection, relation and partial function composition, 
(multi-valued) relation application, and so on, could easily be added to this module. Rather than doing so ourselves, we 
encourage the reader, particularly if not yet acquainted with Maude, to do it him/herself in order to have some fun playing 
with Maude and get a taste for how one can specify finitary set theory operations in Maude just as one would like to do 
it out of a textbook. Also, for a taste of how one can specify finitary set theory (the so-called hereditarily finite sets) in a 
single Maude functional module we refer the reader to [51].

Membership predicates are unary predicates in postfix notation _ : s, where s ∈ S is a sort. Applied to a term t whose 
least sort belongs to the connected component of s (and could even be its kind sort), the predicate states that t has sort 
s. A single such membership predicate is called an unconditional membership and is introduced with the keyword mb. In 
general, both equations and memberships can be conditional, can be labeled, and have, respectively, the general form:

ceq [l]: t = t′ if u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ w j : s j .

cmb [l]: t :s if u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ w j : s j .

That is, both equations and memberships may appear in their conditions. Using ASCII symbols, the conjunction symbol ∧
is rendered in Maude as /\. Since an equation t = t′ will be applied as a left-to-right rewrite rule t → t′ to simplify terms, 

4 The if_then_else_fi operator should not be confused with the condition of conditional equations, introduced by if.
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sort information should increase as such simplification proceeds. This is captured by the requirement that all equations t = t′
(conditional or not) in a functional module should be sort-decreasing. That is, for any substitution θ we should have ls(tθ) ≥
ls(t′θ), where tθ and t′θ denote the respective instantiations of t and t′ by θ . In the most common cases, all the variables 
appearing in such formulas also appear in the term t at the left of the equation t = t′ or the membership t :s. Furthermore, 
the equations and memberships in a condition can appear in different orders. However, for greater expressiveness Maude 
allows conditional equations and memberships whose conditions can have extra variables that are incrementally instantiated
by matching, provided they obey the syntactic requirements explained in [24,28]. We explain the incremental evaluation of 
conditions by means of Example 8 in Section 3.

In any confluent and operationally terminating [43] functional module (more on this in Section 2.2), any term can be 
evaluated to its unique normal form having a least possible sort by applying to it both the module’s equations as left-to-right 
rewrite rules, and the memberships to lower its sort, where equations and memberships are applied modulo the axioms B . 
For example, the idempotency equation [N,M],[N,M] = [N,M] can be applied modulo the associativity-commutativity 
axioms for _,_ to simplify the term [1,2],[3,7],[1,2] to the term [1,2],[3,7], even though the two instances 
of [1,2] are not contiguous. This evaluation to normal form is performed with the reduce command (which can be 
abbreviated to red). For example, in the above functional module in Example 2 above we can perform the following 
evaluations:

reduce in PFUN : {[1,2],[1,2],[3,7],[5,17],[3,7]} .
result PFun: {[1,2],[3,7],[5,17]}

reduce in PFUN : {[1,2],[3,7],[5,17]}[3] .
result NzNat: 7

2.2. Equational simplification modulo axioms

To further explain how Maude’s reduce command, illustrated in the PFUN module above, is performed in general, we 
restrict ourselves to the simpler case of an order-sorted unconditional functional module, i.e., a module of the form fmod 
FOO is (�, E ∪ B) endfm, where the equations E are unconditional and there are no memberships M . Full treatments for 
the general case where the equations E may be conditional or the set M of memberships may be non-empty can be found 
in [82,16]. Consider, for example, the following functional module AC-NAT, which defines addition and multiplication of 
natural numbers with constants 0 and 1 and + declared as a data constructor modulo associativity and commutativity:

fmod AC-NAT is
sorts NzNat Nat .
subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .
op 1 : -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [assoc comm] .
op _+_ : NzNat NzNat -> NzNat [ctor assoc comm] .
op _*_ : Nat Nat -> Nat [assoc comm] .
op _*_ : NzNat NzNat -> NzNat [assoc comm] .

vars N M K : Nat .

eq N + 0 = N .
eq N * 0 = 0 .
eq N * 1 = N .
eq N * (M + K) = (N * M) + (N * K) .

endfm

Note the somewhat subtle fact that + is only declared to be a data constructor for non-zero natural numbers of sort NzNat. 
This is because, thanks to the equation N + 0 = N, any ground (i.e., without variables) natural number expression fully 
simplified by the above equations is either 0 or 1, which are both constructor constants, or a number of the form 1 + · · ·
+ 1, which has sort NzNat.

Intuitively, equational simplification of an arithmetic expression, say t , with the above four equations means that we 
simplify t as much as possible by applying the equations as simplification rules from left to right, but modulo the declared 
axioms B . In this example, such axioms B are the associativity and commutativity of both + and *, which we abbreviate 
to just AC. Of course, we intuitively expect that, after applying the reduce command, any ground arithmetic expression t
will be fully simplified by the above equations to a data expression (i.e., an expression involving only constructor symbols 
declared with the ctor keyword) of the form 0, or 1, or 1 + · · · + 1, called the normal form of t , and that such a normal 
form will be unique up to AC equality.

This subsection (which can be safely skipped by readers familiar with term rewriting modulo axioms) makes all these 
intuitions precise, yet in an informal style; for a fully formal presentation see [35]. Recall that, given an equation t = t′ , its 
orientation as a left-to-right simplification rule, denoted t → t′ , is called a rewrite rule. Therefore, given a set E of equations, 
we get the set of rewrite rules �E = {t → t′ | (t = t′) ∈ E}. For executability purposes in any rule t → t′ all variables in t′
should also appear in t . As already mentioned, for conditional equations this requirement can be relaxed under suitable 
conditions. We need to make precise the intuitive idea of “applying the simplification rules” �E to an expression (also called 
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a term) t modulo axioms B . To do this, we first need to explain a few simple notions, which are best understood when 
a term t is represented as its parse tree. In such a tree, a path from its root to some subexpression (i.e., subtree) can 
be uniquely described by a sequence of natural numbers. Consider, for example, the expression (1 + 1) + ((1 + 0) + 1), 
and the subexpression 1 + 0. The path from the root of the tree to the subtree 1 + 0 can be uniquely described by the 
sequence 2 1. This is because 2 instructs us to select the second argument (1 + 0) + 1 of the overall expression, and then 1
instructs us to select the first argument 1 + 0 of (1 + 0) + 1. Of course, the empty string ε describes the empty path from 
the root to the entire expression (1 + 1) + ((1 + 0) + 1). A symbol f in a general signature � can have 0 arguments (a 
constant), 1 argument (unary symbol), 2 (binary symbol), or an arbitrary number n of arguments (n-ary symbol). Therefore, 
a path p in a �-expression t will in general be a sequence of natural numbers. We call such a path p a position in 
t , since it uniquely identifies a position in the tree, and therefore the subexpression (subtree) at that position. We then 
denote the subexpression of t at position p by t|p . For example, ((1 + 1) + ((1 + 0) + 1))|2 1 = 1 + 0. A position p also 
allows us to “perform surgery” on a term/tree t by replacing the subterm/subtree t|p by another subterm/subtree v at the 
exact same position p. We then denote by t[v]p the term obtained after replacing t|p by v at position p. For example, if 
t = (1 + 1) + ((1 + 0) + 1), then t[0]2 1 = (1 + 1) + (0 + 1).

We next need to explain the notion of a substitution σ , and its application tσ to a term t (which need not be ground, 
i.e., may have variables). A substitution σ is a finite mapping, i.e., a finite set of pairs of the form σ = {(x1, u1), . . . (xn, un)}
where the x1, . . . , xn are different variables, and the u1, . . . , un are �-terms in some signature �. Furthermore, σ must be 
sort-preserving, i.e., if x has sort s, then the least sort of σ(x) must be less that or equal to s. Then, given a �-term t , 
the application tσ of substitution σ to t is the term obtained by replacing each variable x appearing in both t and in the 
domain of σ by σ(x) at all positions where x occurs in t . For example, if t = x + (x + y) and σ = {(x, 1 + z), (y, z + z′)}, 
then tσ = (1 + z) + ((1 + z) + (z + z′)).

Let R be a set of rewrite rules between �-terms, and B a set of equational axioms between some operations in �. 
By definition, the relation u →R,B v holds between two �-terms u and v if and only if there is a position p in u, a rule 
l → r in R , and a substitution σ such that: (i) u|p =B lσ , and (ii) v = u[rσ ]p , where =B denotes provable equality with the 
axioms B . This allows us to precisely capture the notion of equational simplification modulo axioms B . For example, for �E
the rules associated to the functional module AC-NAT, the term 1 + (0 + 1) can be simplified to the term 1 + 1 modulo AC, 
because 1 + (0 + 1) →�E,AC 1 + 1 in two different ways with the rule N + 0 → N , namely: (i) at position 2 with substitution 
σ1 = {(N, 1)}, since (N + 0)σ1 = 1 + 0 =AC 0 + 1, and 1 + (0 + 1)[Nσ1]2 = 1 + (0 + 1)[1]2 = 1 + 1; and (ii) at position ε with 
substitution σ2 = {(N, 1 +1)}, since (N +0)σ2 = (1 +1) +0 =AC 1 +(0 +1), and 1 +(0 +1)[Nσ2]ε = 1 +(0 +1)[1 +1]ε = 1 +1.

We can now explain the reduce command. The simplification steps performed by reduce can be made explicit by 
giving to Maude the command:

set trace on .

With tracing on, the equation, substitution, and the lefthand and righthand subterms are displayed for each rewrite step. 
Thus, for the reduction of the term (1 + (0 + 1)) + (0 ∗ 1) in AC-NAT we obtain the following trace:

Maude> reduce (1 + (0 + 1)) + (0 * 1) .
reduce in AC-NAT : (1 + 0 + 1) + 0 * 1 .
*********** equation
eq 0 + N = N .
N --> 1
0 + 1
--->
1
*********** equation
eq 0 * N = 0 .
N --> 1
0 * 1
--->
0
*********** equation
eq 0 + N = N .
N --> 1 + 1
0 + 1 + 1
--->
1 + 1
rewrites: 3 in {0ms} {cpu} (0ms real) (12500 rewrites/second)
result NzNat: 1 + 1

This trace describes the following sequence of rewrites modulo AC:

(1 + (0 + 1)) + (0 ∗ 1) →�E,AC (1 + 1) + (0 ∗ 1) →�E,AC (1 + 1) + 0 →�E,AC 1 + 1

where the first rewrite happens at position 1 2, the second at position 2, and the third at position ε .
As already pointed out when discussing the PFUN module, to have good executability properties any functional module

fmod FOO is (�, E ∪ B) endfm should be such that its rules �E are: (i) sort-decreasing, (ii) operationally terminating modulo 
B , and (iii) confluent modulo B . Conditions (i)–(iii) can be abbreviated by a single notion: the rules �E are then called 
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convergent5 modulo B . Let us make this more precise. Sort decreasingness (condition (i)) has already been explained when 
discussing PFUN. In the order-sorted unconditional case, condition (ii) just means that the rules �E are terminating modulo 
AC, i.e., no infinite rewrite sequences

t0 →�E,AC t1 →�E,AC · · · →�E,AC tn →�E,AC tn+1 →�E,AC · · ·
are possible. In the context of (ii), condition (iii) of confluent modulo AC just means that for any term t all terms t′ that are 
normal forms of t by rewriting with �E modulo AC, i.e., such that t →∗

�E,AC
t′ (where →∗

�E,AC
denotes the reflexive-transitive 

closure of →�E,AC) and t′ cannot be further rewritten with �E modulo AC, are AC-equal to each other, i.e., are unique up to 
AC-equality. This ensures that term simplification always yields a unique result. The reduce command simplifies each term 
t to its unique normal form.

The module AC-NAT is convergent; it also satisfies the property of being sufficiently complete, which means that the 
normal form of any ground term t is a constructor term according to the ctor declarations in the module, i.e., it is either
0, 1, or a term of the form 1 + · · · + 1. Both convergence and sufficient completeness can be checked by tools in Maude’s 
Formal Environment [50].

2.3. Initial algebra semantics

What is the mathematical meaning of a Maude functional module, say, fmod FOO is (�, M ∪ E ∪ B) endfm? That 
is, what does such a module declaration denote? The answer is simple: Maude has an initial algebra semantics for such 
modules, so that what FOO denotes is the initial algebra [95] T�/M∪E∪B of the theory (�, M ∪ E ∪ B). There are two 
possible descriptions of T�/M∪E∪B , one more abstract, and another very concrete. In the abstract description an element 
[t] ∈ T�/M∪E∪B is the =M∪E∪B -equivalence class of a ground �-term t (i.e., t has no variables), where =M∪E∪B is the 
provable equality equivalence relation in the theory (�, M ∪ E ∪ B) [95]. Under the already-mentioned executability condition 
that the rules �E and the memberships M are convergent modulo B , the more concrete and informative description is given 
by the isomorphic algebra C�/M∪E,B ∼= T�/M∪E∪B , called the canonical term algebra of (�, M ∪ E ∪ B), whose elements [u] ∈
C�/M∪E,B are =B -equivalence classes of ground terms u that are in normal form by the equations E and the memberships 
M modulo B . C�/M∪E,B provides the most concrete possible semantics for FOO, since it is just the semantics of Maude’s
reduce command in the following sense: a ground term t that is evaluated to a term u by Maude’s reduce command 
has as its value the B-equivalence class [u] ∈ C�/M∪E,B . Furthermore, thanks to the Church-Rosser Theorem for membership 
equational logic [16], what the isomorphism C�/M∪E,B ∼= T�/M∪E∪B ensures is the full agreement between the mathematical 
semantics provided by T�/M∪E∪B and the rewriting-based operational semantics (for details see [16], and for the conditional 
order-sorted subcase modulo B see [82]), whose algebra of normal forms is precisely C�/M∪E,B . For example, for (�, M ∪ E ∪
B) our specification of PFUN, C�/M∪E,B is just the algebraic data type giving to finite relations and finite partial functions 
on the natural numbers the exact same mathematical meaning as in set theory. Likewise, the elements of C�/E,B for the
AC-NAT module are the AC-equivalence classes of constructor terms of the form 0, or 1, or 1 + · · · + 1; and addition and 
multiplication are interpreted in C�/E,B as natural number addition and multiplication in this representation of the natural 
numbers.

2.4. Theories, views and parameterized functional modules

Maude, like its OBJ3 predecessor [67], supports a very expressive form of parametric polymorphism [129] by means of 
its parameterized modules. The extra expressiveness has to do with the fact that parameters are not just parametric types, 
but are instead specified by parameter theories. That is, not only types (sorts) can be parametric: constants and function 
symbols can also be parametric, and, furthermore, parameter theories can impose semantic requirements, in the form of 
logical axioms, that must be satisfied by any instantiation of a parameter theory with actual parameters to be correct. 
Roughly speaking,6 a parameter theory called, say, FOO, is a membership equational theory (�, M ∪ E ∪ B), which is declared 
in Maude with syntax: fth FOO is (�, M ∪ E ∪ B) endfth.

What is the mathematical semantics of such a functional theory FOO? Unlike the case of a functional module, whose 
semantics is the initial algebra T�/M∪E∪B , the semantics of a functional theory is the class of all (�, M ∪ E ∪ B)-algebras, 
denoted Alg(�,M∪E∪B) . That is, functional theories have a “loose semantics” that specifies all the possible instantiations of 
the parameter theory (�, M ∪ E ∪ B) by an algebra A ∈ Alg(�,M∪E∪B) as an actual parameter.

Let us illustrate the extra power of parameterized theories, as opposed to just parameterized sorts, by describing some 
examples at a high level (further details can be found in [28]). The case of having just a parameterized sort is handled by 
the trivial parameter theory TRIV:

5 Properly speaking, convergence requires a fourth condition: (iv) strict coherence [99]: if u →�E,B v and u =B u′ , there exists v ′ =B v with u′ →�E,B v ′ . But 
strict coherence is automatically guaranteed by Maude by adding “extension rules” (see Section 4.8 in [28]).

6 In fact, parameter theories may also contain initiality constraints in the sense of, e.g., [63,45], which can impose the requirement that some sorts and 
functions must be interpreted as the initial model of an imported subtheory. For example, a theory T may import the theory NAT of natural numbers in
protecting mode, so that only models where NAT is interpreted as the natural numbers are accepted.
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fth TRIV is
sort Elt .

endfth

Note that the class of algebras of this theory, AlgTRIV = Set, is precisely the class Set of all sets. Therefore, TRIV is ex-
actly the theory of a parametric type in the standard sense. For example, the parameterized functional module of lists 
LIST{X :: TRIV} can be instantiated by any set, say A, as actual parameter to obtain the data type of lists with el-
ements in A. Let us consider two other examples where the parameter theories are nontrivial. The functional module 
SORTING{X :: TOSET} provides a parameterized functional module to sort lists of elements for any totally ordered set 
(A, ≤), that is, for any (A, ≤) ∈ AlgTOSET , where TOSET is the functional theory of totally ordered sets.7 Yet a third example 
is the functional module POLY{R :: RING, X :: TRIV} of polynomials, which has two parameter theories. The first 
is the theory RING of commutative rings, so that its actual parameters are commutative rings (R, −, +, ∗, 0, 1) ∈ AlgRING
providing the ring of coefficients used in the polynomials. The actual parameters for the second theory TRIV are pre-
cisely sets X ∈ Set providing the set of variables used in the polynomial expressions. Of course, for parameter instantiations 
to be correct, all the axioms in theories such as TOSET or RING must be satisfied by their actual parameters, (A, ≤) or 
(R, −, +, ∗, 0, 1). Maude does not check the semantic correctness of instantiations. However, tools like the Maude’s Induc-
tive Theorem Prover (ITP) [32] can be used for this purpose.

But how are parameter theories instantiated in Maude? By theory interpretations. Suppose that we want to instantiate 
the parameterized module POLY{R :: RING, X :: TRIV} to polynomials with rational coefficients and with quoted 
identifiers as variables. We can, for example, use Maude’s modules RAT of rational numbers and QID of quoted identifiers 
in Maude’s standard prelude as actual parameters. But any functional module is a theory, namely, a membership equational 
theory with the initiality constraint that a model belongs to its class of models iff it is an initial algebra for the theory. 
This means that not only the axioms explicitly mentioned in the functional module, but also all its inductive consequences
are true in such models and therefore valid under the initiality constraint. So we just need two theory interpretations: 
ring2RAT : RING→ RAT to get the actual ring of coefficients, and Qid : TRIV→ QID to select the sort Qid in module
QID as the set of variables. What is a theory interpretation? Given two membership equational theories, say (�, M ∪ E ∪ B)

and (�′, M ′ ∪ E ′ ∪ B ′), a theory interpretation (called a view in Maude) V : (�, M ∪ E ∪ B) → (�′, M ′ ∪ E ′ ∪ B ′) is a signature 
map V : � → �′ that preserves all the axioms M ∪ E ∪ B , in the sense that the translated axioms V (M) ∪ V (E) ∪ V (B)

are logical consequences of the theory (�′, M ′ ∪ E ′ ∪ B ′). What is a signature map V : � → �′? It is a mapping of sorts and 
function symbols such that: (i) If (S, ≤) and (S ′, ≤′) are the posets of sorts for � and �′ , then V is a monotonic function
on sorts, and (ii) each constant a in � of sort s in S is mapped to a ground �′-term V (a) with ls(V (a)) ≤ V (s), and each 
function symbol f : s1 . . . sn → s in � is mapped to a �′-term V ( f ) = t′ with ls(t′) ≤ V (s′) and with variables among the 
x1 : V (s1), . . . , xn : V (sn) in such a way that V preserves subtype polymorphism. In Maude such theory interpretations are 
defined with syntax of the form (see [28] for more details):

view V from T to T’ is
sort S1 to S’1 .
...
op f(X1:S1,...,Xn:Sn) to term t’(X1:V(S1),...,Xn:V(Sn)) .
...

endv

A parameterized functional module M{X1 :: T1, ... , Xm :: Tm} can be instantiated by replacing its formal pa-
rameter theories T1, . . ., Tm by corresponding views V1, . . ., Vm from T1, . . ., Tm to T’1, . . ., T’m, where the T’1, . . .,
T’m need not be all different. In this way, we get the instance M{V1, ... ,Vm}. For example, polynomials with rational 
coefficients and quoted identifiers as variables are defined as follows:

fmod RAT-POLY is protecting POLY{Ring2RAT,Qid} . endfm

We say that a parameterized module M{X1 :: T1, ... , Xm :: Tm} is fully instantiated by the views V1, . . ., Vm
if their target theories T’1, . . ., T’m are all (unparameterized) functional modules. But this is not the only possibility: a 
module may be instantiated in an incremental way. For example, we can define a view:

view triv2TOSET from TRIV to TOSET is
sort Elt to Elt .

endv

to instantiate the list module LIST{X :: TRIV} to the module LIST{triv2TOSET} which is still parameter-
ized, but now by the TOSET theory; and we can then use LIST{triv2TOSET} as part of the definition of a 
SORTING{X :: TOSET} module.

Let us see an example illustrating all the ideas discussed so far.

Example 3. A parameterized module for finite partial functions generalizing the PFUN module of Example 2 can be found 
in Fig. 2. This module is such a straightforward generalization of the PFUN module of Example 2 that not much needs to 

7 The fact that, as explained in Footnote 6, a functional theory can include initiality constraints is useful in this case, since TOSET can be easily defined 
by importing the functional module BOOL in protecting mode (see [28]).
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fmod PFUN{X :: TRIV, Y :: TRIV} is
sorts Pair{X,Y} Magma{X,Y} PFun{X,Y} Rel{X,Y} ?{Y} .
subsorts Pair{X,Y} < Magma{X,Y} .
subsorts PFun{X,Y} < Rel{X,Y} .
subsort Y$Elt < ?{Y} .
op undef : -> ?{Y} [ctor] .
vars I J : X$Elt .
var K : Y$Elt .
var M : Magma{X,Y} .
var F : PFun{X,Y} .
var R : Rel{X,Y} .
op [_,_] : X$Elt Y$Elt -> Pair{X,Y} [ctor] .
op null : -> Magma{X,Y} [ctor] . *** empty Magma{X,Y}
op _,_ : Magma{X,Y} Magma{X,Y} -> Magma{X,Y} [ctor assoc comm id: null] .
op {_} : Magma{X,Y} -> Rel{X,Y} [ctor] .
eq [I,K], [I,K] = [I,K] . *** idempotency
mb {null} : PFun{X,Y} .

cmb {[I, K], M} : PFun{X,Y}
if def(I, {M}) = false /\ {M} : PFun{X,Y} .

op def : X$Elt Rel{X,Y} -> Bool . *** is key defined in relation?
eq def(I, {null}) = false .
eq def(I, {[J, K], M}) = if I == J then true else def(I, {M}) fi .

op _[_] : PFun{X,Y} X$Elt -> ?{Y} . *** partial function
application

eq {null}[I] = undef .
ceq {[I, K], M}[J] = if I == J then K else {M}[J] fi

if {[I, K], M} : PFun{X,Y} .
endfm

Fig. 2. PFUN module.

be said about it, except, perhaps, for some syntax details. First of all, note that PFUN{X :: TRIV, Y :: TRIV} has 
two parameters, both with parameter theory TRIV, but of course these two occurrences of TRIV are different and can be 
instantiated quite differently. This means that two different copies of TRIV must be used to avoid a confusion of sorts. In 
the first copy, the sort Elt in TRIV is automatically renamed to X$Elt, and in the second copy to Y$Elt. Furthermore, 
the sorts Pair{X,Y}, Magma{X,Y}, PFun{X,Y} and Rel{X,Y} are now parametric on both X and Y. Finally, the role 
formerly played by the supersort Nat < Nat?, where the undef constant was added in PFUN, is now played by the 
supersort Y$Elt < ?{Y}, which is of course parametric on Y.

Since a view from TRIV into any theory T is fully determined by the name Foo of the sort in T to which the sort Elt
is mapped, Maude has a collection of such views already predefined in its standard prelude. Therefore, to define a module 
of partial functions from the natural numbers to the rationals we can just write:

fmod Nat2RaT-PFUN is
protecting PFUN{Nat,Rat} .

endfm

and we can then evaluate some expressions in this module as follows:

reduce in Nat2RaT-PFUN : {[1,1/2],[1,1/2],[3,1/7],[5,1/17],[3,1/7]} .
result PFun{Nat,Rat}: {[1,1/2],[3,1/7],[5,1/17]}

reduce in Nat2RaT-PFUN : {[1,1/2],[3,1/7],[5,1/17]}[3] .
result PosRat: 1/7

Further Reading. Besides [28], further details on the executability conditions for a (possibly conditional) functional module 
can be found in: (i) for operational termination [43]; for confluence and sort-decreasingness [16,47]; for rewriting modulo 
axioms B , the canonical term algebra C�/M∪E,B , and the agreement between mathematical and operational semantics [82,
99]. For the semantics of parameterized functional modules see [63,45,97].

3. System modules

Maude system modules model concurrent systems as conditional rewrite theories [90,19] of the form R = (�, M ∪ E ∪
B, R, φ), where: (i) (�, M ∪ E ∪ B) is a membership equational theory satisfying the executability conditions of a functional 
module (i.e., convergence), (ii) R is a set of (possibly conditional) rewrite rules specifying the system’s concurrent transitions, 
and (iii) φ is a frozenness map (more on this below). In Maude, a system module for the above theory named FOO is 
declared with syntax: mod FOO is (�, M ∪ E ∪ B, R, φ) endm.
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What is the concurrent system defined by R? The membership equational theory (�, M ∪ E ∪ B) defines the states of such 
a system as the elements of the algebraic data type C�/M∪E,B . We can call this aspect the static part of the specification R. 
Instead, its dynamics, i.e., how states evolve, is described by the rewrite rules R , which specify the possible local concurrent 
transitions of the system thus specified. The system’s concurrency is naturally modeled by the fact that in a given state [u] ∈
C�/M∪E,B several rewrite rules in R may be applied concurrently to different subterms of u, producing several concurrent 
local state changes, and that rewriting logic itself models those concurrent transitions as logical deductions (see [90,19] and 
the later discussion on semantics). The only restrictions imposed when applying rules in R are specified by the frozenness 
map φ : � −→ P(N), which assigns to each operator f : k1 . . .kn → k in � the subset φ( f ) ⊆ {1, . . . , n} of its frozen 
arguments, that is, those argument positions under which rewriting with rules in R is forbidden.

The rules in R can be unconditional rewrite rules of the form t → t′ , where t, t′ are �-terms of the same kind. They are 
then specified in Maude with syntax rl t => t′ . but, by making them conditional, rules can become considerably more 
expressive. Conditional rules in R have the general form:

crl [l]: t → t′ if u1 = v1 ∧ . . . ∧ un = vn ∧
w1 : s1 ∧ . . . ∧ wm : sm ∧
l1 → r1 ∧ . . . ∧ lk → rk .

where in Maude the → symbol is rendered in ASCII as => and the conjunction ∧ as /\, and where t and t′ are �-terms 
of the same kind, ui = vi, 1 ≤ i ≤ n, are �-equations, wi : si, 1 ≤ i ≤ m, are memberships, and li → ri, 1 ≤ i ≤ k, are rewrite 
conditions understood as reachability predicates, that is, the arrow in them (rendered in ASCII as =>) should be implicitly 
understood in a reflexive-transitive closure sense as li →∗ ri . Of course, in their full generality, so that, for example, new 
variables may appear in a rule’s condition in an arbitrary manner, a conditional rule may not be executable in Maude. 
However, Maude allows conditional rules to have extra variables in their conditions provided they appear in a disciplined 
manner that allows such extra variables to be incrementally instantiated by incrementally evaluating the conditions in the 
rule from left to right; see [28] for further details. We postpone a more detailed explanation of conditional rule evaluation 
until after Example 8. Rule labels are optional, but may be useful when using formal tools or controlling the execution using 
strategies (see Section 4).

Besides the syntactic requirements for a conditional rule in R having extra variables in its condition to be executable in 
Maude spelled out in [28], some further executability requirements are needed: (i) first of all, the equational part (�, M ∪ E ∪
B) must be executable as a functional module, i.e., the oriented equations �E and the memberships M should be convergent
modulo B; and (ii) the rules R should “commute” with the equations E modulo B in the precise sense of having the ground 
coherence property. This exactly means that if t is a ground term having a normal form [u] ∈ C�/M∪E,B , and we can perform 
a rewrite t →R,B t′ with a rule in R modulo B , then we can also perform a rewrite u →R,B t′′ so that t′ and t′′ have 
the same normal form modulo B , say, [w] ∈ C�/M∪E,B . Ground coherence can be checked by Maude’s ChC tool [47]. This 
allows Maude to always normalize terms with the equations E modulo B before performing a transition with R , under the 
assurance that no state transitions will ever be missed by following this strategy.

Let us explain how terms are evaluated in a system module. As pointed out at the beginning of Section 2, the key 
difference between an equational program (functional module) and a rewriting logic one (system module) is that evaluation 
to normal form of a term t in a functional module by means of the reduce command yields a unique result (determinism) 
under the confluence and operational termination assumptions. Instead, rewrite theories are intrinsically nondeterministic. 
What should Maude do to evaluate a term t in a system module? t can be rewritten in many different ways to many 
different terms, and the process may never terminate. Maude offers the following options:

• A rule fair sequence of rewrite steps starting from a term t can be obtained by giving the command: rewrite t . but 
since such a rewrite sequence may not terminate, a bound limiting the number of rewrite steps can be specified (see 
[28]). Rule fairness means that if more than one rule is applicable to the terms of a rewrite sequence, different rules 
are applied, avoiding the repetition of the very same rule for each term in a rewrite sequence.

• A rule and position fair sequence of rewrite steps starting from a term t can be obtained by giving the command:
frewrite t . and a bound limiting the number of rewrite steps can likewise be specified (see [28]). Position fairness 
is similar to rule fairness but refers to the positions of a term where a rule is applicable.

• The entire, possibly infinite, state space of terms reachable from a term t by a sequence of rewrite steps can be explored 
with Maude’s search command, which searches such a state space in a breadth-first manner. Moreover, a search graph, 
instead of a search tree, is constructed by storing previously seen states; this allows the search command to terminate 
when there is a finite graph associated to the state space. The general form of the command is: search t =>� t′
s.t. C . where t′ is a term pattern, so that we are looking for terms reachable from t that are instances of t′ by a 
substitution θ , and C is an equational condition such that only reachable terms of the form t′θ such that Cθ holds are 
selected. The � symbol is a place holder for the options: � = 1 (exactly one rewrite step), � = + (one or more steps), 
� = * (zero or more steps), and � = ! (terminating states). Since the search may either never terminate and/or find an 
infinite number of solutions, two bounds can be added to a search command: one bounding the number of solutions 
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mod HANOI is
protecting NAT-LIST .
sorts Tower Hanoi .
subsort Tower < Hanoi .
op (_)[_] : Nat NatList -> Tower [ctor] .
op empty : -> Hanoi [ctor] .
op __ : Hanoi Hanoi -> Hanoi [ctor assoc comm id: empty]

.
vars S T D1 D2 : Nat . vars L1 L2 : NatList .

crl [move] : (S) [L1 D1] (T) [L2 D2]
=> (S) [L1] (T) [L2 D2 D1]
if D2 > D1 .
rl [move] : (S) [L1 D1] (T) [nil]
=> (S) [L1] (T) [D1] .

endm

Fig. 3. HANOI module.

requested, and another bounding the depth of the rewrite steps from the initial term t (see the examples in Example 9
and [28] for details). Note that Maude’s search command provides a quite expressive form of model checking by 
reachability analysis, in addition to its LTL-based model checking.

Example 4. Let us consider a simple example of a system module. The HANOI module in Fig. 3 specifies the Tower of Hanoi 
puzzle, invented by the French mathematician Éduard Lucas in 1883. His story tells that in an Asian temple there are three 
diamond posts; the first is surrounded by sixty-four golden disks of increasing size from the bottom to the top. The monks 
are committed to move them from one post to another respecting two rules: only a disk can be moved at a time, and they 
can only be laid either on a bigger disk or on the floor. Their objective is to move all of them to the third post, and then 
the world will end.

In the HANOI module, the golden disks are modeled as natural numbers describing their size, and the posts are described 
as lists of disks in bottom-up order. In general, we have terms describing the states of the game and rules that model the 
moves allowed by the game. Rewriting with these rules allows going from a given initial state to other states, hopefully 
including the desired final state. In [28, Chapter 7] there is a collection of game examples that follow this general pattern.

If we try to rewrite the initial puzzle setting

Maude> rewrite in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] .

the command does not terminate because the disks are being moved in a loop. We can instead rewrite with a bound on 
the number of rewrites, like 23 in the following command example

Maude> rewrite [23] in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] .
result Hanoi: (0)[3 2] (1)[1] (2)[nil]

Even if the example has non-terminating rewrite sequences, as shown above with the rewrite command, the number of 
reachable configurations is finite and the following search command terminates.

Maude> search in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] =>* H .
.... 27 solutions

Indeed, the solution to the initial configuration (0)[3 2 1] (1)[nil] (2)[nil] is (0)[nil] (1)[nil] (2)[3 
2 1] and is found at state 26.

In Section 4 we will consider again this example with the help of strategies.

3.1. Logic programming running example

One of the key strengths of rewriting logic, inherited by Maude, is that a wide range of concurrent and nondetermin-
istic systems can be naturally specified as rewrite theories and executed and analyzed as system modules in Maude. Such 
systems include: (i) a very wide range of concurrency models [94,98], (ii) the executable semantic definition of concurrent 
programming languages [107,123,108], and (iii) a very wide range of logics, specified as rewrite theories using rewriting 
logic as a logical framework [83,98]. Section 5 will give examples of how concurrent object systems can be naturally spec-
ified in Maude. Here we give an example that straddles cases (ii)–(iii) above, namely, a computational logic (Horn Logic 
[73]) that can at the same time be used as a programming language. Since this logic programming example uses symbolic 
computation in an essential manner, we will present several variants of it at various places in the paper to illustrate various 
Maude symbolic computation features.
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Example 5 (LP-Syntax). To define the semantics of logic programs as a system module8 we first specify an LP-SYNTAX
functional module that imports the TERM functional module with sort Term in Example 1. An atomic predicate is defined 
as a Qid symbol applied to a non-empty list of terms in parentheses:

sort Predicate .
op _‘(_‘) : Qid NeTermList -> Predicate [ctor] .

Since for Horn clauses we need both empty and non-empty lists of predicates, we define them in Maude as sorts Predi-
cateList and NePredicateList (the view for sort Predicate is not included):

protecting (LIST * (sort List{X} to PredicateList,
sort NeList{X} to NePredicateList,
op __ to _‘,_ [prec 50])) {Predicate} .

We define a Horn clause using the standard symbol :- for ⇐. We express an axiom, e.g. ’father(’john,’peter), as 
a Horn clause with an empty body, e.g. ’father(’john,’peter) :- nil.

sort Clause .
op _:-_ : Predicate PredicateList -> Clause [ctor prec 60] .

Finally, a logic program is given by a colon-separated list of Horn clauses, of sort Program:

protecting (LIST * (sort List{X} to Program,
sort NeList{X} to NeProgram,
op __ to _;_ [prec 70])) {Clause} .

Then, we should provide some basic notion of substitution.

Example 6 (LP-Substitution Module). Using the syntax for predicates and Horn clauses given in Example 5, we define a 
substitution as a partial function according to Example 3. We need to define views from the sort Elt to sorts Variable
and Term.

view Variable from TRIV to TERM is
sort Elt to Variable .

endv

view Term from TRIV to TERM is
sort Elt to Term .

endv

And we import the parametric module PFUN instantiated to the views Variable and Term but rename sort PFun{Vari-
able,Term} into Substitution, operator _,_ for combining bindings into _;_, and operator [_,_] into the more 
standard syntax _->_ for substitution bindings.

fmod LP-SUBSTITUTION is
protecting (PFUN * (op _,_ to _;_,

op [_,_] to _->_)) {Variable,Term}
* (sort PFun{Variable,Term} to Substitution,

sort Pair{Variable,Term} to Binding) .
endfm

Now, we are able to provide some basic syntactic unification functionality.

Example 7 (LP-Unification Module). Continuing Example 6, module LP-UNIFICATION in Fig. 4 defines a syntactic unifica-
tion procedure, without the occurs check, for both predicates and terms that will be used by our Horn logic interpreter in 
Example 8 below. Note that the failure to unify is represented by an expression at the kind [Substitution].

Example 8 (LP System Module). Using the LP syntax defined in Example 5 and the unification algorithm in Example 7, 
the system module LP-SEMANTICS in Fig. 5 defines the semantics of logic programs and provides an interpreter with 
a breadth-first strategy. We first define logic programming configurations to hold the execution state, e.g. PL $ S where
PL is a predicate list and S is a substitution, that represents the pending objectives and the bindings carried from already 
executed clauses. The execution of a query predicate w.r.t. a logic program will be defined by means of transition rules 
transforming an expression of the form < N | PL $ S | PG > where N is a natural number used for renaming clauses 
before unification, PL and S are as explained above, and PG is the logic program.

Its semantics is defined by a single conditional rule that invokes a variable renaming function rename not shown here. 
Note that a program is defined as a list, instead of a set, of clauses of the form P2 :- PL2 making the interpreter closer 
to how logic programming languages work. Finally, we add an initialization function to evaluate a predicate list PL in Pr.

8 As explained at the end of Section 1.1, the Maude code is available at http://maude .cs .illinois .edu.

http://maude.cs.illinois.edu
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fmod LP-UNIFICATION is
protecting LP-SYNTAX .
protecting LP-SUBSTITUTION .

op unify : Predicate Predicate Substitution -> [Substitution] .
eq unify(F(NeTL1), F(NeTL2), S)
= unify(NeTL1, NeTL2,S) .

vars C F : Qid .
var V : Variable .
vars NeTL1 NeTL2 : NeTermList .
var NVT : NvTerm .
var S : Substitution .
vars T T1 T2 : Term .

op unify : NeTermList NeTermList Substitution -> [Substitution] .
eq unify(C, C, S) = S .
eq unify(V, T1, (V -> T2) ; S) = unify(T1, T2, (V -> T2) ; S) .
ceq unify(T1, V, (V -> T2) ; S) = unify(T1, T2, (V -> T2) ; S) if not T1 :: Variable

.
ceq unify(V, T, S) = (V -> T) ; S if not def(V, S) .
ceq unify(NVT, V, S) = (V -> NVT) ; S if not def(V, S) .
eq unify(F[NeTL1], F[NeTL2], S) = unify(NeTL1, NeTL2, S) .
ceq unify((T1,NeTL1), (T2, NeTL2), S)

= unify(NeTL1, NeTL2, unify(T1, T2, S))
if unify(T1, T2, S) :: Substitution .

endfm

Fig. 4. LP-UNIFICATION module.

mod LP-SEMANTICS is
protecting LP-UNIFICATION .
sort Configuration .
op <_|_$_|_> : Nat PredicateList Substitution Program -> Configuration

.

crl [clause] :
< N1 | P1, PL1 $ S1 | Pr1 ; P2 :- PL2 ; Pr2 >
=> < N2 | PL3, PL1 $ S2 | Pr1 ; P2 :- PL2 ; Pr2 >
if P3 :- PL3 := rename(P2 :- PL2, N1)
/\ S2 := unify(P1, P3, S1)
/\ N2 := max(N1, last$(P3 :- PL3)) .

...

op <_|_> : PredicateList Program -> Configuration .
eq < PL | Pr > = < last$(PL) | PL $ null | Pr > .

endm

Fig. 5. LP-SEMANTICS module.

Since the condition in the above conditional rule only involves equations, its incremental evaluation is exactly the same 
as if it were the condition of a conditional equation or membership in a functional module. Therefore, we can use this 
example to explain the incremental evaluation of conditions in all cases. After this explanation we will briefly summarize 
the more general case of a conditional rule that also has rewrite conditions. To syntactically indicate the fact that extra 
variables appear in a condition, the equality sign := is used instead of the usual sign =. At the left of the := sign a 
pattern with new variables is placed. Here three such patterns are given, one for each condition, namely, the term P3 :-
PL3 and the variables S2 and N2. Operationally, the substitution instantiating the new variables in these three patterns 
is obtained by incrementally (one condition at a time, from left to right): (i) reducing to normal form with the module’s 
equations and memberships the substitution instance of the condition’s righthand side. But instance under which substitution? 
For the first condition—here the condition P3 :- PL3 := rename(P2 :- PL2,N1)—its righthand side variables—here
P2, PL2 and N1—must always appear in the conditional rule’s lefthand side. Therefore, the righthand side rename(P2 
:- PL2,N1) is instantiated by the matching substitution θ0 with which we have instantiated the rule’s lefthand side to 
attempt a rewrite. Suppose, for example, that in θ0 P2 was instantiated to ‘p(x{1}), PL2 to nil, and N1 to 5. Then 
we reduce to normal form with the module’s equations the instance by θ0 of the condition’s righthand side rename(P2 
:- PL2,N1), that is, the term rename(‘p(x{1}) :- nil,5). Since the rename function just renames the variables 
to fresh ones above the given index, we will get the result ‘p(x{6}) :- nil. Then, (ii) we now incrementally ex-
tend θ0 by instantiating the new variables in the condition’s lefthand side P3 :- PL3 by matching ‘p(x{6}) :- nil 
against it. That is, P3 is instantiated to ‘p(x{6}) and PL3 is instantiated to nil, thus getting an extended substitution 
θ0 � θ1. But this extended substitution can now instantiate all the variables in the righthand side of the second condition 
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S2 := unify(P1,P3,S1), so that we can again reduce the instance by θ0 � θ1 of its righthand side to normal form 
and then instantiate S2 to that normal form to obtain a new extended substitution θ0 � θ1 � θ2. We then proceed in the 
same manner to evaluate the third condition using θ0 � θ1 � θ2 and in that way we finally get an extended substitution 
θ0 � θ1 � θ2 � θ3 with which we can now instantiate the conditional rule’s righthand side, thus ending the conditional rule’s 
evaluation. Note that the second and third conditions exactly correspond to where clauses in some functional languages.

Since rewrite conditions are not used in this example (but are used in Fig. 13 below), we briefly explain their use and 
execution. Further details can be found in [28]. In general, a reachability condition l → r may have extra variables in its 
righthand side r. It succeeds for a substitution instance lθ (where, given the incremental way conditions are evaluated, θ
will extend the original substitution θ0 obtained by matching the rule’s lefthand side) iff lθ can be rewritten in 0, 1 or 
more steps with the module’s rules R to a term whose normal form by the module’s equations E and memberships M is a 
substitution instance of r up to B-equality. In this way, if l → r was the kth condition, we obtain an extended substitution 
θ � θk that we then use to evaluate condition k + 1 or, if no more conditions are left, to instantiate the rule’s righthand side. 
Note that, in general, the equalities, memberships, and reachability conditions in a rule’s condition need not appear in any 
particular order, provided that the variables appearing in either the righthand side of an equational condition u := v or the 
lefthand side of a rewrite condition l → r have already appeared in previous conditions and/or in the rule’s lefthand side.

We can now evaluate some logic programs using our semantic definition as a breadth-first logic programming inter-
preter. An interesting question is what pattern t′ to use in a search from an initial state < PL | Pr >, where PL is 
the list of predicates that we wish to find a solution for, and Pr is the given Horn logic program. The answer is that 
we should look for a pattern of the form: < N | nil $ S1 | Pr >, indicating that the list of objectives has be-
come empty and therefore the substitution S1 is a solution. Therefore, calls to our interpreter will have the general form: 
search < PL | Pr > =>* < N | nil $ S1 | Pr > .

Example 9 (Search LP-evaluation). Consider the following logic program defining several family relations between Jane, Mike, 
Sally, John, and Tom.

mother(jane, mike) .
mother(sally, john) .
father(tom, sally) .
father(tom, erica) .
father(mike, john) .
sibling(X1, X2) :- parent(X3,X1), parent(X3,X2) .
parent(X1, X2) :- father(X1,X2) .
parent(X1, X2) :- mother(X1,X2) .
relative(X1, X2) :- parent(X1,X3), parent(X3,X2) .
relative(X1, X2) :- sibling(X1,X3), relative(X3,X2) .

This logic program is expressed using the syntax of Example 5 as follows:

’mother(’jane, ’mike) :- nil ;
’mother(’sally, ’john) :- nil ;
’father(’tom, ’sally) :- nil ;
’father(’tom, ’erica) :- nil ;
’father(’mike, ’john) :- nil ;
’sibling(x{1}, x{2}) :- ’parent(x{3}, x{1}), ’parent(x{3}, x{2}) ;
’parent(x{1}, x{2}) :- ’father(x{1}, x{2}) ;
’parent(x{1}, x{2}) :- ’mother(x{1}, x{2}) ;
’relative(x{1}, x{2}) :- ’parent(x{1}, x{3}),’parent(x{3}, x{2}) ;
’relative(x{1}, x{2}) :- ’sibling(x{1}, x{3}),’relative(x{3}, x{2})

We can now evaluate different initial calls for this program by specifying specific lists of atoms that we seek a solution 
for. We can do so by searching for a set of configurations reachable from the given initial call that contains a solution. 
As already explained, a solution will correspond to a configuration of the form nil $ Sub. Depth and solution bounds 
are automatically provided by Maude’s search command (see page 12). In order to simplify the presentation, we have 
abbreviated our program to P and we do not show all the bindings returned by the search command, just the binding 
associated to the logic programming computed substitution.

First, we can ask whether Sally and Erica are sisters; the associated reachability graph is finite and no bound is needed.

Maude> search < ’sibling(’sally, ’erica) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 7)
S1 --> (x{1} -> ’sally) ; (x{2} -> ’erica) ; (x{3} -> x{4}) ;

(x{4} -> ’tom) ; (x{5} -> ’sally) ; (x{6} -> x{4}) ; x{7} -> ’erica

Who are the siblings of Erica? Sally and herself.

Maude> search < ’sibling(x{1},’erica) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 19)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{6}) ; (x{3} -> ’erica) ; (x{4} -> x{5}) ;

(x{5} -> ’tom) ; (x{6} -> ’sally) ; (x{7} -> x{5}) ; x{8} -> ’erica

Solution 2 (state 20)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{6}) ; (x{3} -> ’erica) ; (x{4} -> x{5}) ;

(x{5} -> ’tom) ; (x{6} -> ’erica) ; (x{7} -> x{5}) ; x{8} -> ’erica
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How many possible siblings are there? Sally and Sally, Sally and Erica, Erica and Sally, Erica and Erica, John and John, and 
Mike and Mike.

Maude> search < ’sibling(x{1},x{2}) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 19)
S1 --> (x{1} -> x{3}) ; (x{2} -> x{4}) ; (x{3} -> x{7}) ; (x{4} -> x{9}) ;

(x{5} -> x{6}) ; (x{6} -> ’tom) ; (x{7} -> ’sally) ; (x{8} -> x{6}) ;
x{9} -> ’sally

...

Solution 7 (state 25)
S1 --> (x{1} -> x{3}) ; (x{2} -> x{4}) ; (x{3} -> x{7}) ; (x{4} -> x{9}) ;

(x{5} -> x{6}) ; (x{6} -> ’sally) ; (x{7} -> ’john) ; (x{8} -> x{6}) ;
x{9} -> ’john

Seven solutions are given. Are Jane and John relatives? Yes

Maude> search < ’relative(’jane,’john) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 11)
S1 --> (x{1} -> ’jane) ; (x{2} -> ’john) ; (x{3} -> x{5}) ; (x{4} -> ’jane) ;

(x{5} -> ’mike) ; (x{6} -> x{5}) ; x{7} -> ’john

Who are the relatives of John? Tom and Jane.

Maude> search [2] < ’relative(x{1},’john) | P > =>* < N | nil $ S1 | Pr > .
Solution 1 (state 28)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{5}) ; (x{3} -> ’john) ; (x{4} -> x{6}) ;

(x{5} -> ’tom) ; (x{6} -> ’sally) ; (x{7} -> x{6}) ; x{8} -> ’john

Solution 2 (state 29)
S1 --> (x{1} -> x{2}) ; (x{2} -> x{5}) ; (x{3} -> ’john) ; (x{4} -> x{6}) ;

(x{5} -> ’jane) ; (x{6} -> ’mike) ; (x{7} -> x{6}) ; x{8} -> ’john

This last call produces an infinite search and we must restrict the search, by asking for two solutions only.

3.2. Initial model semantics and parameterization

What is the mathematical meaning of a system module mod FOO is (�, M ∪ E ∪ B, R, φ) endm, that is, of a rewrite 
theory R = (�, M ∪ E ∪ B, R, φ)? It is its initial model TR in the class (indeed, category) of all models of R [90,19]. What 
does TR look like? Why, of course, it models a concurrent system! Its states, as already pointed out, are the normal forms 
[w] ∈ C�/M∪E,B in the canonical term algebra of (�, M ∪ E ∪ B). What about its transitions? TR provides a true concurrency 
semantics. That is, not only are one-step transitions modeled: concurrent computations are also modeled. Furthermore, TR
provides a notion of equivalence between two different descriptions of the same concurrent computation. Mathematically, 
what all this means is that for each kind [s] in � the concurrent computations of R form a category [90,19], whose 
objects/states are precisely the normal forms in C�/M∪E,B,[s] . But how are concurrent computations modeled? They coincide 
with rewriting logic proofs in R, with the category structure providing a natural notion of proof equivalence. This is what 
one should expect, since any declarative programming language worth its salt should satisfy the equivalence:

Computation = Deduction

and of course this is exactly what also happens at the equational logic level of functional modules, where the initial algebra 
T�/M∪E∪B is built up out of the proof theory of membership equational logic [95].

What about parameterized system modules? They are completely analogous to parameterized functional ones. That is, 
a parameterized system module M{X1 :: T1, ... , Xm :: Tm} is a rewrite theory with T1, . . ., Tm its parameter 
theories and is instantiated by views V1, . . ., Vm from T1, . . ., Tm to T’1, . . ., T’m to the instance M{V1, ... , Vm}. 
The only new feature is that, although often the parameter theories are functional, some of the theories among the T1, . . .,
Tm may be system theories, i.e., theories of the form th FOO is (�, M ∪ E ∪ B, R, φ) endth, where, as done for functional 
theories, the rewrite theory R = (�, M ∪ E ∪ B, R, φ) is given a “loose semantics,” so that actual parameter instances of this 
formal parameter range over the class of all models of R. Of course, if the parameter theory Ti is a rewrite theory, then 
the target theory T’i should also be a rewrite theory, and the view Vi : Ti → T’i is a theory interpretation between 
rewrite theories.

Further Reading. Besides [28], the following references may be helpful: (i) for the semantics of rewrite theories [90,19]; for 
the modeling of concurrent systems, programming languages, and logical systems in rewriting logic [98,94,107,123,108,83]; 
(iii) for the ground coherence property and how to check it [47]; (iv) for automatically transforming a rewrite theory into 
a semantically equivalent one that is ground coherent [100]; and for an even more general notion of rewrite theory well 
suited for symbolic computation [100].
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Table 1
Main strategy combinators and their informal semantics.

Strategy ζ Results �ζ �(θ, t)

idle {t}
fail ∅
rlabel { t′ ∈ T� | t →rlabel

R,B t′ }
α;β

⋃
t′∈�α�(θ,t)

�β�(θ, t′)

α|β �α�(θ, t) ∪ �β�(θ, t)

α*
⋃∞

n=0 �α�n(θ, t)

match P s.t. C

{
{t} if matches(P , t, C, θ) �= ∅
∅ otherwise

α ? β : γ

{
�α;β�(θ, t) if �α�(θ, t) �= ∅
�γ �(θ, t) if �α�(θ, t) = ∅

matchrew P s.t. C by
X1 using α1, . . . ,

Xn using αn

⋃
σ∈matches(P ,t,C,θ)

( ⋃
t1∈�α1 �(σ ,σ (X1)) · · ·⋃

tn∈�αn �(σ ,σ (Xn)) σ [x1/t1, . . . , xn/tn](P )
)

sl(t1, . . . , tn)
⋃

(lhs,δ,C)∈Defs
⋃

σ∈matches(ζ,lhs,C,id) �δ�(σ , t)

4. The Maude strategy language

Rewriting with rules is a highly nondeterministic process, since at every step many rules could be applied at various 
positions, as described in Section 3. Sometimes, a finer control on how rules are applied may be desirable. This responsibility 
has traditionally been given to the Maude reflective features, or has been achieved by means of specific data and rule 
representations that force rewriting to happen in some desired ways. However, such data and rule representation usually 
have to be changed if a different execution is desired, and make specifications harder to understand. To avoid this, a strategy 
language has been proposed [84,55,85] as a specification layer above those of equations and rules. This provides a cleaner 
way to control the rewriting process, respecting a separation of concerns principle, and allowing the same system module to 
be controlled by different strategy specifications. The design of this language was influenced, among others, by ELAN [15]
and Stratego [18].

Strategies are seen as recipes to control rewriting, but they are usually described as transformations from an initial term 
to a set of terms. These are the results of the strategy, which can be multiple because of its nondeterminism. The usual 
Maude command for rewriting with strategies is:

srewrite [〈Bound 〉] in 〈ModuleName 〉 : 〈Term 〉 by 〈StrategyExpr 〉 .

It rewrites the given term according to the given strategy, and prints all the results. Like in the standard rewriting com-
mands, we can optionally specify the module where to rewrite after in, and a bound on the number of solutions to be 
shown with [N] just after the command keyword, which can be shortened to srew. For example, going back to the Tower 
of Hanoi example introduced in Section 3 (page 13), we consider a basic strategy which is just rule application, invoked by 
mentioning the rule label as follows:

Maude> srew [3] in HANOI : (0)[3 2 1] (1)[nil] (2)[nil] using move .

Solution 1
rewrites: 1
result Hanoi: (0)[3 2] (1)[1] (2)[nil]

Solution 2
rewrites: 2
result Hanoi: (0)[3 2] (1)[nil] (2)[1]

No more solutions.
rewrites: 2

The two results of applying the move rule to the initial term are shown, and the interpreter tells us that there are no more 
solutions, because we have requested three, exceeding the possible one-step moves. The order in which solutions appear is 
implementation dependent. Notice that in this way we have a standard approach to model a game: terms represent states, 
rules represent allowed moves, and the strategy language can be used to model a (hopefully winning) strategy for solving 
or playing the game.

In order to use more elaborate strategies we will need to introduce the complete strategy language, whose constructors 
are summarized in Table 1. As we have seen, rule application is its basic building block. Besides the rule label, further 
restrictions can be imposed; its most general syntax has the form:

label [X1 <- t1, . . . , Xn <- tn] {α1, . . . ,αm}



F. Durán et al. / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100497 19
f(... g(...) ...) -> f(... g(...) ...)

g(...t...s...) -> g(...t′...s′...)
matching substitution

rewriting
αi α j

Fig. 6. Behavior of amatchrew.

When this strategy is invoked, all rules with the given label and exactly m rewriting conditions are applied nondetermin-
istically at any position of the subject term. Rewriting inside those conditions is controlled by the strategies α1, . . . , αm

between curly brackets, which must be omitted when m = 0. Between square brackets, we can optionally specify an initial 
ground substitution to be applied to both sides of the rule. Moreover, restricting the application of the rule to the top 
position is possible by surrounding it by the top(α) modifier.

The other basic element of the language are the tests, used for checking conditions on the subject term. Their syntax has 
the form match P s.t. C where P is a pattern and C is an equational condition. On a successful match and condition 
check, the result is the initial term; otherwise, the test does not provide any solution. The initial keyword of the test 
indicates where to match, either on top (match), anywhere (amatch), or on the flattened top modulo axioms (xmatch). 
For example, we can test whether the Tower of Hanoi puzzle is solved:

Maude> srew (0)[nil] (1)[nil] (2)[3 2 1] using
match (N)[3 2 1] H s.t. N =/= 0 .

Solution 1
result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

We present now various combinators that build more complex strategies out of rule applications and tests. The concate-
nation α;β executes the strategy α and then the strategy β on each α result. The disjunction or alternative α|β executes 
α or β; in other words, the results of α|β are both those of α and those of β . The iteration α* runs α zero or more 
times consecutively. These combinators resemble similar constructors for regular expressions. The empty word and empty 
language constants are here represented by the idle and fail operators; the result of applying idle is always the initial 
term, while fail generates no solution.

We say that a strategy fails when no solution is obtained. Remember that failures can happen in less explicit situations: 
when a rule cannot be applied to the term, when a test fails, etc. Thus, strategies will explore rewriting paths that can later 
be discarded.

A conditional strategy is written α ? β : γ . It executes α and then β on its results, but if α does not produce any, it 
executes γ on the initial term. That is, α is the condition; β the positive branch, which applies to the results of α; and γ
the negative branch, which is applied only if α fails. Some common patterns are defined as derived operators with their own 
names such as:

• The or-else combinator is defined by α or-else β ≡ α ? idle : β . It executes β only if α has failed.
• The negation is defined as not(α) ≡ α ? fail : idle. It fails when α succeeds, and succeeds as an idle when α

fails.
• The normalization operator α!≡ α* ; not(α) applies α until it cannot be further applied.

The match and rewrite operator matchrew restricts the application of a strategy to a specific subterm of the subject term. 
Moreover, we can use it to obtain information about the term, by means of pattern matching or equational calculations, and 
bind it to new variables which can then be used to parameterize its substrategies. Its syntax is
matchrew P (X1, . . . , Xn) s.t. C by X1 using α1, . . . , Xn using αn

where P is a pattern with variables X1, . . . , Xn among others, and C is an optional equational condition. The using clauses 
associate variables in the pattern, which are matched by subterms of the matched term, with strategies that will be used to 
rewrite them. These variables must be distinct and must appear in the pattern. The semantics of the amatchrew operator is 
illustrated in Fig. 6. All matches of the pattern in the subject term that satisfy the (maybe empty) condition are considered. 
If there is none, the strategy fails. Otherwise, for each match, the subterms bound to each Xi are extracted, rewritten 
according to αi in parallel,9 and their solutions are put in place of the original subterms. Hence, all the results from all the 
subterms are combined to generate the reassembled solutions.

Strategies can be given a name and are defined in strategy modules. Named strategies facilitate the definition of complex 
strategies, and extend the expressiveness of the language by means of recursive and mutually recursive strategies. As for 
functional and system modules, a strategy module is declared in Maude using the keywords

9 The various subterms are rewritten independently, and their progresses are interleaved in a fair way. However, the current implementation does not 
use hardware parallelism.
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smod 〈ModuleName 〉 is 〈DeclarationsAndStatements 〉 endsm

A typical strategy module imports the system module it will control, declares some strategies, and specifies their definitions.

strat 〈StratName 〉 [ : 〈InputType 〉* ] @ 〈SubjectType 〉 .

sd 〈StratCall 〉 := 〈StrategyExpr 〉 .
csd 〈StratCall 〉 := 〈StrategyExpr 〉 if 〈EqCondition 〉 .

Let us come back to the Tower of Hanoi puzzle, to show an example of strategy module. First, we define the auxiliary 
operator third which calculates the third of two posts in a functional module HANOI-AUX (Fig. 7). Then, we define a 
recursive strategy moveAll to solve the puzzle given three arguments: the source and target posts, and the number of 
disks to be moved. This is specified in the strategy module HANOI-SOLVE in Fig. 8. Now, we can execute it:
Maude> srew (0)[3 2 1] (1)[nil] (2)[nil] using moveAll(0, 2, 3) .

Solution 1
result Hanoi: (0)[nil] (1)[nil] (2)[3 2 1]

No more solutions.

Although strategies control and restrict rewriting, they do not make the process deterministic. A strategy may allow mul-
tiple rewriting paths, produced by alternative local decisions that may appear during its execution. The rewrite command 
solves this nondeterminism by choosing a single alternative using a fixed criterion. On the contrary, the search command 
explores all the possible rule applications looking for a term matching a given goal. The srewrite command also performs 
an exhaustive exploration of the alternatives, but in this case, looking for strategy solutions. Hence, srewrite can be seen 
as a search, not in the complete rewriting tree of search, but in a subtree pruned by the effect of the strategy. How this 
tree is explored has implications for the command output and performance.

The srewrite command explores the rewriting graph following a fair policy which ensures that all solutions that 
are reachable in a finite number of steps are eventually found, unless the interpreter runs out of memory. Without being 
a breadth-first search, multiple alternative paths are explored in parallel. An alternative rewriting command dsrewrite
(depth strategic rewrite) explores the strategy rewriting graph in depth. Its syntax coincides with srewrite except for the 
starting keyword, which can be abbreviated to dsrew.

dsrewrite [〈Bound 〉] in 〈ModuleName 〉 : 〈Term 〉 by 〈StrategyExpr 〉 .

The disadvantage of the depth-first exploration is its incompleteness, since it can get lost in an infinite branch before 
finding some reachable solutions; see the next section for an example. The advantages are that dsrewrite can be faster 
and requires less memory than srewrite.

4.1. Logic programming running example

In addition to the specification of strategies to solve games, like in the previous Tower of Hanoi example, another typical 
application of strategies is the execution of operational semantics for programming languages, which are specified by means 

fmod HANOI-AUX is
protecting SET{Nat} .
op third : Nat Nat ~> Nat .
var N M K : Nat .
ceq third(N, M) = K if N, M, K := 0, 1, 2 .

endfm

Fig. 7. HANOI-AUX module.

smod HANOI-SOLVE is
protecting HANOI-RULES .
protecting HANOI-AUX .

strat moveAll : Nat Nat Nat @ Hanoi .

var S T C : Nat .

sd moveAll(S, S, C) := idle .
sd moveAll(S, T, 0) := idle .
sd moveAll(S, T, s(C)) := moveAll(S, third(S, T), C) ;

move[S <- S, T <- T] ;
moveAll(third(S, T), T, C) .

endsm

Fig. 8. HANOI-SOLVE module.
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mod LP-EXTRA is
protecting LP-SEMANTICS .
op isSolution : Configuration -> Bool .
var N : Nat . var S : Substitution .
var Pr : Program . var Conf : Configuration .
eq isSolution(< N | nil $ S | Pr >) = true .
eq isSolution(Conf) = false [owise] .

endm

Fig. 9. LP-EXTRA module. (The equation attribute owise denotes the word otherwise and allows for a simple equational definition of this predicate just 
by searching for the only interesting pattern.)

smod PROLOG is
protecting LP-EXTRA .
strat solve @ Configuration .
var Conf : Configuration .
sd solve := match Conf s.t. isSolution(Conf)

? idle : (clause ; solve)
.

endsm

Fig. 10. PROLOG module.

of rules that require in many cases to be executed in a specific way. Again, language expressions become terms in its 
Maude representation, operational semantics rules become rewrite rules, and strategies are used to control rewriting in 
the appropriate way. In this sense, the Maude strategy language has already been used to define the operational semantics 
of the parallel functional programming language Eden [72,87], and also in the definition of modular structural operational 
semantics [17]. In this section, the strategy language is used to define the semantics of a logic programming language similar 
to Prolog [33], continuing with Examples 5 and 8 in Section 3.1. Strategies will be used to discard failed proofs, to enforce 
the Prolog search strategy, and to implement advanced features like negation. Although it is also possible to implement the 
Prolog cut in this way, this feature will not be shown here (see [24]).

The rewrite command is not useful as a logic programming interpreter because it simply explores a single rewriting 
path, thus a single proof path. This is clearly not enough to show multiple solutions, but it may also be insufficient to 
find even a single one. An admissible logic programming interpreter must consider all possible proof paths and be able 
to resume them when the execution arrives to a dead end. In Example 8 we used the search command as a possible 
solution. Here, strategies will be used instead.

First, we define an auxiliary predicate isSolution in module LP-EXTRA in Fig. 9 to decide whether a given config-
uration is a solution. We then define, in the strategy module PROLOG in Fig. 10, the recursive strategy solve that applies 
the clause rule in Example 8 until a solution is found, and implicitly rejects any rewriting path that does not end in 
one.

Now, the solve strategy can be applied to the previous examples, where family is the kinship predicates program of 
Example 9. The exhaustive search of the srewrite command shows all reachable solutions for the initial predicate.

Maude> srew < ’parent(’tom, x{1}) | family > using solve .

Solution 1
rewrites: 453
result Configuration:
< 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’sally

| (omitted) >

Solution 2
rewrites: 489
result Configuration:
< 3 | nil $ x{1} -> x{3} ; x{2} -> ’tom ; x{3} -> ’erica

| (omitted) >

No more solutions.
rewrites: 605

As the example above shows, the resulting configurations are not easily readable, because they are overloaded with 
intermediate data like mappings on variables that do not occur in the initial predicate, and the full program, which has 
been omitted here. To display solutions in a more readable form, we will use a wrapper strategy. It will use the solution
rule defined in LP-SIMPLIFIER-BASE (Fig. 11) that restricts the substitution to the variables in a given set, after resolving 
them by transitivity. Some auxiliary functions are required for this task.

The strategy wsolve in the strategy module PROLOG-SIMPLIFIER in Fig. 12 records in VS the variables that occur in 
the initial configuration predicate, then executes the previous solve strategy, and finally applies the solution rule with 
the initial variable set, thus restricting the substitution to those variables.
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mod LP-SIMPLIFIER-BASE is
extending LP-SEMANTICS .
sort VarSet .
subsort Variable < VarSet .
op empty : -> VarSet .
op _;_ : VarSet VarSet -> VarSet [ctor assoc comm id: empty] .

op occurs : Configuration -> VarSet .
op simplify : Substitution VarSet -> Substitution .
op solution : Substitution -> Configuration [ctor format (g! o)] .
*** [...] the functions above are defined by equations
var N : Nat . var S : Substitution .
var Pr : Program . var VS : VarSet .

rl [solution] : < N | nil $ S | Pr >
=> solution(simplify(S, VS)) [nonexec] .

endm

Fig. 11. LP-SIMPLIFIER-BASE module.

Now, the previous example can be rerun with wsolve, obtaining more concise and clearer answers.

Maude> srew < ’parent(’tom, x{1}) | family > using wsolve .

Solution 1
rewrites: 511
result Configuration: solution(x{1} -> ’sally)

Solution 2
rewrites: 569
result Configuration: solution(x{1} -> ’erica)

No more solutions.
rewrites: 641

We can also observe that the order in which solutions appear depends on the way the rewriting tree is explored. With 
the dsrewrite command the results will appear in the same order as in Prolog, because both explore the derivation tree 
in depth. However, the srewrite command will often obtain shallower solutions first.

Maude> dsrew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ;
’q(’b) :- nil > using wsolve .

Solution 1
rewrites: 82
result Configuration: solution(x{1} -> ’b)

Solution 2
rewrites: 111
result Configuration: solution(x{1} -> ’a)

No more solutions.
rewrites: 117

Maude> srew < ’p(x{1}) | ’p(x{1}) :- ’q(x{1}) ; ’p(’a) :- nil ;
’q(’b) :- nil > using wsolve .

Solution 1
rewrites: 105
result Configuration: solution(x{1} -> ’a)

Solution 2
rewrites: 117
result Configuration: solution(x{1} -> ’b)

No more solutions.
rewrites: 95

As we discussed before, the benefit of using srewrite is that all reachable solutions are shown. In Prolog and with
dsrewrite some of them may be missed by going down a non-terminating branch.

Maude> dsrew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >
using wsolve .

Debug(1)> abort . *** non-terminating

Maude> srew < ’p(x{1}) | ’p(x{1}) :- ’p(x{1}) ; ’p(’a) :- nil >
using wsolve .
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smod PROLOG-SIMPLIFIER is
protecting LP-SIMPLIFIER-BASE .
extending PROLOG .
extending LP-EXTRA .
extending LP-SEMANTICS .

strat wsolve @ Configuration .

var Conf : Configuration . var VS : VarSet .

sd wsolve := matchrew Conf s.t. VS := occurs(Conf)
by Conf using (solve ; solution[VS <- VS])

.
endsm

Fig. 12. PROLOG-SIMPLIFIER module. (Although the system modules LP-EXTRA and LP-SEMANTICS are already included via PROLOG, explicit ex-
tending inclusions are written in Fig. 12, since PROLOG-SIMPLIFIER is not a protecting extension of these. By the Maude convention, looser inclusions 
do not degrade the mode of stricter ones held by transitivity (see [28]).)

mod LP-EXTRA-NEGATION is
including LP-EXTRA .

var Q : Qid . var PL : PredicateList
.

var Conf : Configuration . var NeTL : NeTermList .

crl [negation] :
< N | ’\+(Q[NeTL]), PL $ S | Pr >
=> < N | PL $ S | Pr >
if < N | Q(NeTL) $ S | Pr > => Conf .

endm

Fig. 13. LP-EXTRA-NEGATION module.

smod PROLOG-NEGATION is
protecting LP-EXTRA-NEGATION .

strat solve-neg @ Configuration .

var Conf : Configuration .

sd solve-neg := match Conf s.t. isSolution(Conf) ? idle
:

((clause | negation{not(solve-neg)}) ; solve-neg) .
endsm

Fig. 14. PROLOG-NEGATION module.

Solution 1
rewrites: 109
result Configuration: solution(x{1} -> ’a)

Debug(1)> abort . *** non-terminating

We consider now the negation feature. In logic programming, the concept of negation is complicated: facts and pred-
icates express positive knowledge, so we could either explicitly assert what is false or assume that any predicate that 
cannot be derived from the facts is considered false. The latter approach is known as negation as failure: the negation of a 
predicate holds if the predicate cannot be proved, no matter the values its variables take. This cannot be expressed with 
Horn clauses but it can be easily implemented using strategies and an extra rewriting rule negation added in the ex-
tension LP-EXTRA-NEGATION (Fig. 13) of LP-EXTRA. Like in ISO Prolog, in the system module in Fig. 13 negation is 
represented as a normal predicate10 named \+, which can be seen as the ASCII representation of the not provable sym-
bol �.

The negation rule only removes the negation predicate from the objectives list if its rewriting condition holds. By its 
own semantics, negation never binds variables, so the substitution remains unchanged. The initial term of the rewriting 
condition contains the negated predicate as its only objective. Whether this term can be rewritten to a solution con-
figuration determines whether the negated predicate can be satisfied. Hence, we need to control the condition with a 
strategy that fails whenever that happens. We do so in the strategy module PROLOG-NEGATION in Fig. 14. The strat-

10 Hence, its argument is written as a term, i.e. brackets should be used instead of parentheses.
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egy is similar to the original solve strategy, but the negation rule can be applied when a negated predicate is on 
top of the objective list. The strategy not(solve-neg) fails if solve-neg finds a solution for the negated predicate. 
Otherwise, it behaves like an idle, triggering the rule application. Thus, it is a suitable strategy for the rewriting condi-
tion.

We can illustrate the negation feature using the family tree example. Again, to obtain simplified results, we use the strat-
egy wsolve-neg, defined from solve-neg as wsolve was defined from solve in PROLOG-SIMPLIFIER (a generic 
implementation is possible using parameterized strategy modules, see [24]). A predicate ’no-children claims that some-
one does not have descendants:

Maude> srew < ’no-children(’erica) | family ;
’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using wsolve-neg .

Solution 1
rewrites: 887
result Configuration: solution(empty)

No more solutions.
rewrites: 887

Maude> srew < ’no-children(’mike) | family ;
’no-children(x{1}) :- ’\+(’parent[x{1}, x{2}]) > using solve-neg .

No more solutions.
rewrites: 894

The second predicate does not succeed since Mike is the father of John.
As mentioned at the beginning of this section, the Prolog cut has also been implemented using strategies in this way 

(details will appear in [24]). These examples show that our framework can be used to fully realize Kowalski’s motto “Al-
gorithm = Logic + Control” [78], putting into practice the separation of concerns allowed by our strategy language. The 
logic of a system (be it a game or a language operational semantics or whatever) is declaratively specified by means of 
equations and rules. The concrete, controlled way of executing such rules, when desired or when necessary, is written as a 
strategy on top of them. The separation between logic and control allows us to have different controls for the same logic, 
like, for example, having a logic programming interpreter which is complete because it uses breadth-first search instead of 
the standard depth-first search used by Prolog.

Further Reading. The Maude strategy language was introduced in a series of conference papers [84,55,85] and applied in 
different areas, including operational semantics (see [72,87,17], among others). More current work includes the extension 
of the language to include parameterized strategies [120], and the development of model-checking techniques for systems 
controlled by strategies [119]. More examples and further details can be found in [24].

5. Object-based programming

In the design of distributed systems, the motto think globally, act locally expresses the essential philosophy. Each object 
in a distributed system has only a quite limited partial view of the global state and can only act locally, typically by com-
municating with other objects and changing its local state, to achieve some global system goals. A well-designed distributed 
system uses such local actions to achieve a desired global behavior.

Rewriting logic [90] is precisely a logic to express local actions in a concurrent system by means of rewrite rules. As 
explained in Section 1, the concurrent systems that can be specified in rewriting logic, and therefore in Maude, can be 
widely different. In this sense, rewriting logic and Maude are completely ecumenical, since they do not prescribe any par-
ticular style of concurrent, synchronous or asynchronous, interaction at all: any such style can be supported. Nevertheless, 
the overwhelming majority of distributed systems and communication protocols can be most naturally expressed as made 
up of concurrent objects having their own local states that communicate with each other by message passing. Given the great 
importance of distributed object-based systems, Maude provides special support for such systems in the following ways: (i) 
a special notation is supported both in Maude and in its Full Maude extension; (ii) the frewrite command, when applied 
to object-based systems, provides an object and message fair rewriting strategy for simulation purposes; (iii) several kinds 
of external objects allow regular Maude objects to interact with the external world; and (iv) using such external objects, 
a Maude object-based distributed system design can be seamlessly transformed (within Maude) into an actual distributed 
system implementation. We discuss all these aspects in this section.

5.1. Modeling concurrent object systems in Maude

To begin with, we explain below Maude’s syntax support for concurrent objects, and illustrate how a concurrent object 
system design can be expressed in Maude using such a syntax. As a running example we consider the goal of designing a 
communication protocol that can achieve in-order, fault-tolerant communication in an asynchronous medium where mes-
sages can arrive out-of-order and can furthermore be lost. The first order of business is to specify the distributed states of 
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mod CONFIGURATION is
sorts Attribute AttributeSet .
subsort Attribute < AttributeSet .
op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet
[ctor assoc comm id: none] .

sorts Oid Cid Object Msg Portal Configuration .
subsort Object Msg Portal < Configuration .
op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object]

.
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none] .

op <> : -> Portal [ctor] .
endm

Fig. 15. CONFIGURATION module.

such a system that we will call configurations. After this is done, we can then specify its concurrent behavior by means of 
rewrite rules that define the local actions that each object in such a system can perform to achieve in-order fault-tolerant 
communication.

A system’s distributed state or configuration can be naturally understood as a “soup” or “ether” medium in which both 
objects and messages “float.” In such a fluid medium, objects and messages can come together and participate in concurrent 
actions. We can model such a fluid medium mathematically by means of structural axioms of associativity and commutativity. 
That is, we can think of a configuration as a multiset of objects and messages. Since each object should have a unique 
identifier, the objects in the system should form a set. However, there can be several copies of a message floating around in 
the system.

Given sorts Object, Msg, and Configuration, objects and messages can be declared as wished, and configurations 
of them can also be defined as needed. Indeed, what make them special, whatever the operators used to define them are 
the object, msg (or message) and config (or configuration) attributes. However, to simplify their use, several 
definitions are included in the predefined module CONFIGURATION in Fig. 15. With these declarations, objects of a class 
C are record-like structures of the form < O : C | a1 : v1, ..., an : vn >, where O is the name of the object 
and vi are the current values of its attributes.

The essential facts about concurrent object configurations are all stated in the CONFIGURATION module. They are 
multisets of objects and messages belonging, respectively, to the subsorts Object and Msg. These multisets are built with 
the “empty syntax” (juxtaposition) associative-commutative union operator __, having none (empty configuration) as its 
identity element. Objects themselves are constructed with the operator <_:_|_>, which takes a name or object identifier of 
sort Oid, belonging to an object class whose name has sort Cid of class identifiers, and having an associative-commutative 
set of attribute-value pairs of sort AttributeSet built with the associative-commutative set union operator _,_ with 
empty set none as its identity. Each such attribute-value pair has sort Attribute and can have any syntax we like. 
Likewise, we can use any syntax we like to define different kinds of messages. However, a message operator should be of 
sort Msg or a subsort of it, should have the attribute msg, and the first argument of any message operator should be the
Oid of the message’s addressee.

All these ideas can be illustrated by defining configurations of objects and messages for our fault-tolerant communication 
protocol in the functional module FT-COMM-CONF in Fig. 16. Objects belong to classes Sender or Receiver. In addition 
to importing the CONFIGURATION module, the FT-COMM-CONF module imports QID-LIST from Maude’s prelude. This 
functional module provides a sort QidList formed from elements of sort Qid using the associative concatenation (empty 
syntax) operator __, having nil (empty list) as its identity element. Notice that the module FT-COMM-CONF provides11

definitions for class names, the attribute definitions of the objects in these classes, and the messages.
In a typical configuration for our desired fault-tolerant in-order communication protocol we will have senders and re-

ceivers, together with messages ‘traveling’ between them:

< ’Alice : Sender | buff: ’a ’b ’c ’d, rec: ’Bob, cnt: 0 >
< ’Bob : Receiver | buff: ’a, snd: ’Alice, cnt: 1 >
(to ’Alice from ’Bob ack 0)

In this configuration, there is a sender object ’Alice and a receiver object ’Bob of respective classes Sender and
Receiver. Both senders and receivers have a buffer attribute buff: whose value is a list of quoted identifiers, either 
remaining to be sent by the sender, or already received by the receiver. Both also have a counter attribute cnt: which is 
used to ensure in-order communication. Initially, the value of the cnt: attribute is 0 for both senders and receivers, which 
gets increased as sends are received and acknowledged. Furthermore, to establish the target of the communication, sender 
objects have a receiver attribute rec: with the name of the object to which values in the list should be sent. Likewise, 

11 For a discussion on attributes not explained here, such as gather, please see [24].
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mod FT-COMM-CONF is
extending CONFIGURATION .
protecting NAT + QID-LIST .

ops Sender Receiver : -> Cid [ctor] .
subsort Qid < Oid .

op cnt:_ : Nat -> Attribute [ctor gather (&)] .
op buff:_ : QidList -> Attribute [ctor gather (&)] .
op snd:_ : Oid -> Attribute [ctor gather (&)] .
op rec:_ : Oid -> Attribute [ctor gather (&)] .

op to_from_val_cnt_ : Oid Oid Qid Nat -> Msg [ctor msg]
.

op to_from_ack_ : Oid Oid Nat -> Msg [ctor msg] .
endm

Fig. 16. FT-COMM-CONF module.

receiver objects have a sender attribute snd: with the name of the sender from which data is expected. Sender objects 
like ’Alice send values in messages such as to ’Bob from ’Alice val ’a cnt 0. This message means that it is 
the first value in the list being transmitted and its contents is ’a. In the above configuration this first message was already 
received by ’Bob, who now stores it in its buffer and is awaiting the second value, whose counter will be 1. However, due 
to the asynchronous nature of the communication, sender ’Alice is not yet aware that the first value has already been re-
ceived and is still holding it in its send buffer in case it was lost and has to be re-sent. In the meantime, receiver ’Bob did 
send a message to ’Alice from ’Bob ack 0 acknowledging receipt of the first value ’a. But this acknowledgment
has not yet been received by sender ’Alice.

Of course, the functional module FT-COMM-CONF does not do anything. It describes, if you will, the statics, i.e., just the 
distributed states of our system. Actions themselves, the system’s dynamics, are defined in the system module FT-COMM
in Fig. 17. The rules in FT-COMM are almost self-explanatory. Sender objects send the first value in their current list, plus 
a counter, to the receiver with the snd rule. However, they still keep the sent value in their buffer until an acknowledg-
ment is received. If the expected acknowledgment is received, the sent value can be cleared from the send buffer and the 
counter is increased for the next value to be sent (rule rec-ack1). Note that the case where the sender receives an ac-
knowledgment for counter value M with an empty buffer will not happen for starting configurations with only objects. The 
case of a duplicated acknowledgment message that was already received before is handled by rule rec-ack2, where the 
acknowledgment message is just discarded. Receiver objects perform two actions. Rule rec1 describes the case where the 
“expected” value arrives, is put into the receive buffer, the counter is increased, and an acknowledgment message is sent 
to the sender. The case where the sent value was already received is handled by the rule rec2, where the receiver’s local 
state does not change, but an acknowledgment message is nevertheless sent, since a previous acknowledgment may have 
been lost.

Although not necessary, for illustration purposes, to show the progress of the computation we have added print at-
tributes to each rule. In general, the print attribute allows one to specify information to be printed when a statement 
(equation, membership axiom, rule, or strategy) is executed, providing a minimized and flexible trace capability. If printing 
is turned on, when a statement with a print attribute is applied the pattern following print is instantiated using the 
corresponding matching substitution.

The FT-COMM module does indeed ensure in-order fault-tolerant communication. Furthermore, if the sender was sending 
a list of length k, counters in the sender and the receiver were originally 0, and the receiver’s buffer was originally empty, 
there is a terminating rewrite sequence in whose final state both the sender and the receiver counters have the same value 
k, the sender’s buffer is empty, and the original list is now in the receiver’s buffer.

We use Maude’s frewrite command to explore the behavior of FT-COMM. As discussed in Section 3.1, the frewrite
command implements a rule and position fair rewriting strategy. In the special case of object-message configurations, such 
as the FT-COMM configurations, frewrite implements an object-message fair strategy.12 Roughly speaking, in each round, 
the strategy attempts to apply object-message rules to all existing object-message pairs and then attempts a single non-
object-message rewrite of the resulting configuration using the remaining rules.

We see in the output below that the protocol terminates as expected.

Maude> frew
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice > .

result Configuration:
< ’Alice : Sender | cnt: 4, buff: nil, rec: ’Bob >
< ’Bob : Receiver | cnt: 4, buff: ’a ’b ’c ’d, snd: ’Alice >

12 The precise definition of what an object-message is, the full specification of frewrite, and more examples can be found in [28].
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mod FT-COMM is
including FT-COMM-CONF .

var Q : Qid . var L : QidList . vars N M : Nat . vars A B : Oid
.

rl [snd] : < A : Sender | buff: Q L, rec: B, cnt: M >
=> < A : Sender | buff: Q L, rec: B, cnt: M >

(to B from A val Q cnt M)
[print "[snd]: " A " sends " Q " to " B] .

rl [rec1] :
(to B from A val Q cnt M)
< B : Receiver | buff: L, snd: A, cnt: M >
=> < B : Receiver | buff: L Q, snd: A, cnt: s M >

(to A from B ack M)
[print "[rec1]: " B " receives new " Q " from " A] .

crl [rec2] :
(to B from A val Q cnt N)
< B : Receiver | buff: L, snd: A, cnt: M >
=> < B : Receiver | buff: L, snd: A, cnt: M >

(to A from B ack N)
if N < M
[print "[rec2]: " B " receives old " Q " from " A] .

rl [rec-ack1] :
(to A from B ack M)
< A : Sender | buff: Q L, rec: B, cnt: M >
=> < A : Sender | buff: L, rec: B, cnt: s M >
[print "[rec-ack1]: " A " receives 1st ack " M " from " B] .

crl [rec-ack2] :
(to A from B ack N)
< A : Sender | buff: L, rec: B, cnt: M >
=> < A : Sender | buff: L, rec: B, cnt: M >
if N < M
[print "[rec-ack2]: " A " receives old ack " N " from " B] .

endm

Fig. 17. FT-COMM module.

To see how the protocol progresses, let us rewrite one step at a time using Maude’s continue (abbreviated cont) com-
mand. We see that first ’Alice sends ’a to ’Bob with count 0.

Maude> frew [1] < ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice > .

result (sort not calculated): (
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’a cnt 0)
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice >

In the next step, ’Bob receives ’a and sends an acknowledgment message to ’Alice with count 0.

Maude> cont 1 .
result Configuration:
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

In the third step ’Alice sends ’a to ’Bob with count 0 again, since it has not yet received an ack message.

Maude> cont 1 .
result (sort not calculated): (
< ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’a cnt 0)
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

In the fourth step, ’Alice receives the count 0 acknowledgment, increments its counter, and removes ’a from its list. 
Also, ’Bob receives the repeated ’a with count 0 and sends another ack. This is two rewrites, although the command was 
to continue 1 step. This is because the frewrite strategy attempts to deliver a message to each object in a given round.

Maude> cont 1 .
result Configuration:
< ’Alice : Sender | cnt: 1, buff: ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0



28 F. Durán et al. / Journal of Logical and Algebraic Methods in Programming 110 (2020) 100497
Continue again, ’Alice sends ’b to ’Bob with count 1.

Maude> cont 1 .
result (sort not calculated): (
< ’Alice : Sender | cnt: 1, buff: ’b ’c ’d, rec: ’Bob >
to ’Bob from ’Alice val ’b cnt 1
< ’Bob : Receiver | cnt: 1, buff: ’a, snd: ’Alice >
to ’Alice from ’Bob ack 0

To see the difference between the strategies of the rewrite and frewrite commands, we use a configuration with 
two instances of the protocol, that is, two sender-receiver pairs. Using frewrite to execute the parallel protocol sessions, 
with the print attribute activated we see that activity of the two sessions is interleaved:

Maude> set print attribute on .
Maude> frew [24]
< ’Alice : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Bob >
< ’Ada : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Boris >
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice >
< ’Boris : Receiver | cnt: 0, buff: nil, snd: ’Ada > .

[snd]: ’Alice sends ’a to ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec1]: ’Bob receives new ’a from ’Alice
[rec1]: ’Boris receives new ’a from ’Ada
[snd]: ’Alice sends ’a to ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec-ack1]: ’Alice receives 1st ack 0 from ’Bob
[rec-ack1]: ’Ada receives 1st ack 0 from ’Boris
[rec2]: ’Bob receives old ’a from ’Alice
[rec2]: ’Boris receives old ’a from ’Ada

...
[snd]: ’Alice sends ’d to ’Bob
[snd]: ’Ada sends ’d to ’Boris
[rec-ack2]: ’Alice receives old ack 2 from ’Bob
[rec-ack2]: ’Ada receives old ack 2 from ’Boris
[rec1]: ’Bob receives new ’d from ’Alice
[rec1]: ’Boris receives new ’d from ’Ada
[snd]: ’Alice sends ’d to ’Bob
[snd]: ’Ada sends ’d to ’Boris
[rec-ack1]: ’Alice receives 1st ack 3 from ’Bob
[rec-ack1]: ’Ada receives 1st ack 3 from ’Boris
[rec2]: ’Bob receives old ’d from ’Alice
[rec2]: ’Boris receives old ’d from ’Ada
rewrites: 69 in 2ms cpu (3ms real) (23334 rewrites/second)
result Configuration:
< ’Alice : Sender | cnt: 4, buff: nil, rec: ’Bob >
< ’Ada : Sender | cnt: 4, buff: nil, rec: ’Boris >
< ’Bob : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Alice >
< ’Boris : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Ada >
(to ’Alice from ’Bob ack 3)
(to ’Ada from ’Boris ack 3)

If instead we use rewrite, the rules are applied first to objects and messages in one session, and when that terminates, 
the rules are applied to objects and messages of the other session.

Maude> rew [24]
< ’Alice : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Bob >
< ’Ada : Sender | cnt: 0, buff: (’a ’b ’c ’d), rec: ’Boris >
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice >
< ’Boris : Receiver | cnt: 0, buff: nil, snd: ’Ada > .

[snd]: ’Alice sends ’a to ’Bob
[rec1]: ’Bob receives new ’a from ’Alice
[rec-ack1]: ’Alice receives 1st ack 0 from ’Bob
[snd]: ’Alice sends ’b to ’Bob

...
[snd]: ’Alice sends ’d to ’Bob
[rec1]: ’Bob receives new ’d from ’Alice
[rec-ack1]: ’Alice receives 1st ack 3 from ’Bob
[snd]: ’Ada sends ’a to ’Boris
[rec1]: ’Boris receives new ’a from ’Ada
[rec-ack1]: ’Ada receives 1st ack 0 from ’Boris

...
[snd]: ’Ada sends ’d to ’Boris
[rec1]: ’Boris receives new ’d from ’Ada
[rec-ack1]: ’Ada receives 1st ack 3 from ’Boris
rewrites: 25 in 1ms cpu (1ms real) (18037 rewrites/second)
result Configuration:
< ’Alice : Sender | cnt: 4, buff: nil, rec: ’Bob >
< ’Ada : Sender | cnt: 4, buff: nil, rec: ’Boris >
< ’Bob : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Alice >
< ’Boris : Receiver | cnt: 4, buff: (’a ’b ’c ’d), snd: ’Ada >
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mod FT-COMM-IN-FAULTY-ENV is
including FT-COMM .

var Q : Qid . var M : Nat . vars A B : Oid
.

rl [loss1] : (to B from A val Q cnt M) => none
[print "[loss1]: lost val " Q " to " B] .

rl [loss2] : (to A from B ack M) => none
[print "[loss2]: lost ack " M " to " A] .

endm

Fig. 18. FT-COMM-IN-FAULTY-ENV module.

In the case of finite behaviors, in the end the result is the same, but if the protocol execution did not terminate, then using
rewrite one of the sessions might never execute, while using frewrite both sessions make progress.

Note that FT-COMM is a protocol that not only ensures in-order communication, but is also fault-tolerant. But can we 
also model a faulty environment where messages can be lost? Yes, we can do so in the system module FT-COMM-IN-
FAULTY-ENV in Fig. 18, which adds such a faulty environment to FT-COMM. What is remarkable about the communication 
protocol specified in FT-COMM is that it still works in this faulty environment under suitable fairness assumptions. Of course, 
if as soon as every message is sent it is immediately destroyed by the loss1 or the loss2 rules, no communication will 
ever happen. But this is clearly an unfair behavior which makes the protocol’s rules hopeless. By assuming fair executions 
and defining an equational abstraction [106] that collapses a multiset of messages into a set, the correctness of the FT-COMM
protocol in such a faulty environment can actually be model checked using Maude’s LTLR model checker [10]. For more on 
Maude’s LTLR model checker see Section 9.

If we repeat the above frew command in the FT-COMM-IN-FAULTY-ENV module, we see that the first few steps are 
the same as when done in the module FT-COMM. However, instead of ’Alice receiving the ack from ’Bob in the fourth 
step, the message is lost.

Maude> frew [1] < ’Alice : Sender | cnt: 0, buff: ’a ’b ’c ’d, rec: ’Bob >
< ’Bob : Receiver | cnt: 0, buff: nil, snd: ’Alice > .

[snd]: ’Alice sends ’a to ’Bob
[rec1]: ’Bob receives new ’a from ’Alice
[snd]: ’Alice sends ’a to ’Bob
[loss2]: lost ack 0 to ’Alice
[rec2]: ’Bob receives old ’a from ’Alice
...

But is this all? Has the FT-COMM example illustrated all there is to say about distributed objects in Maude? Not at all. 
It has illustrated the most basic possibilities, but many more remain. Here are some: (1) The Full Maude extension supports 
an even more expressive syntax for objects in which object classes can be structured in multiple inheritance hierarchies, 
rewrite rules can be specified more succinctly and are automatically inherited by subclasses [92,28]. Furthermore, such 
class inheritance solves the well-known inheritance anomaly between subclassing and concurrency [93]. (2) Configurations 
need not be flat: they can have a nested structure—what we call a Russian dolls structure. Furthermore, such a nested 
structure can provide very useful mechanisms for meta-object-based reflection [110]. (3) Many distributed algorithms use 
time, and sometimes physical space, in an essential way. Both time and space can be modeled in an object-based manner in 
Maude using the Real-Time Maude tool [113] (see, e.g., [114,79] for applications to sensor networks and to mobile ad-hoc 
networks). (4) Not only time, but also randomness in distributed object systems can be modeled by probabilistic rewrite rules
[1] (see, e.g., [76,14] for two applications, respectively to sensor protocols and to cloud storage systems). Maude has been 
used for the specification and verification of many other distributed systems; see, e.g., [28,98,26] for surveys on additional 
applications.

5.2. External objects

Maude objects should be able to interact by message-passing with a variety of external objects that represent external 
entities with state, including the user regarded as another external object. Any configuration of Maude objects that wish to 
exchange messages with external objects must include a special portal constructor, defined in module CONFIGURATION:

sort Portal .
subsort Portal < Configuration .
op <> : -> Portal [ctor] .

From an implementation point of view, the main purpose of having a portal subterm in a configuration is to avoid the 
degenerate case of a configuration that consists just of an object waiting for a message from outside of the configura-
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mod COMMON-MESSAGES is
protecting STRING .
including CONFIGURATION .

op gotLine : Oid Oid String -> Msg [ctor msg ...]
.

op write : Oid Oid String -> Msg [ctor msg ...] .
op wrote : Oid Oid -> Msg [ctor msg ...] .

endm

mod STD-STREAM is
including COMMON-MESSAGES .

op getLine : Oid Oid String -> Msg [ctor msg ...]
.

op stdin : -> Oid [special (...)] .
op stdout : -> Oid [special (...)] .
op stderr : -> Oid [special (...)] .

endm

Fig. 19. Fragments of modules COMMON-MESSAGES and STD-STREAM (please, note the ellipses).

tion. This would be problematic because the special behavior for object-message rewriting and exchanging messages with 
external objects is attached to the configuration constructor13:

op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none] .

Exchanging messages with external objects is enabled by the erewrite command. It performs fair rewriting and han-
dles incoming and outgoing messages. It checks for messages in a configuration that are addressed to external objects, and 
checks for messages from external objects that are queued, waiting to enter a configuration containing a specific object.

Certain predefined external objects are available and some of them are object managers that can create more ephemeral 
external objects that represent entities such as files and sockets or, as we will see in Section 8.5, virtual copies of the Maude 
interpreter itself.

5.2.1. Standard streams
Each Unix process has three I/O channels, called standard streams: standard input (stdin), standard output (stdout), 

and standard error (stderr). In Maude, these are represented as three unique external objects, that are defined in a 
predefined module STD-STREAM. Because some of the messages that are useful for streams are also useful for file I/O, 
these messages are pulled out into a module COMMON-MESSAGES. This module together with a fragment of the module
STD-STREAM are shown in Fig. 19.

After more than 20 years you can now write a “Hello World!” program in Maude. Module HELLO in Fig. 20 shows a 
very simple program implementing an interaction with the user, which is asked to introduce his/her name to be properly 
greeted. The equation for run produces a starting configuration, containing the portal, a user object to receive messages, 
and a message to stdin to read a line of text from the keyboard. When stdin has a line of text, it sends the text to the 
requesting object in a gotLine message.

Maude> erew run .
What is your name? Joe
Hello Joe
result Configuration: <> wrote(myObj, stdout) < myObj : myClass | none >

5.2.2. File I/O
Unlike standard streams, of which there are exactly three, a Unix process may have many different files open at any one 

time. Thus, in order to create new file handle objects as needed, we have a unique external object called fileManager. 
To open a file, the fileManager is sent a message openFile. On success, an openedFile message is returned, with 
the name of an external object that is a handle on the open file as one of its arguments and to which messages to read and 
write the file can be directed. On failure, a fileError message is returned, with a text explanation of why the file could 
not be opened as one of its arguments. These messages are defined in the module FILE, which is distributed as part of the 
Maude system. A fragment of this predefined module is shown in Fig. 21.

The COPY-FILE module in Fig. 22 illustrates the basic use of files. It specifies a simple algorithm to copy files. In 
this case, the run operator takes two arguments: the name of the file to be copied and the name of the new file. As 
for the previous example, the equation for run produces a starting configuration, containing the portal, a user object to 

13 While a single object or message has sort Configuration there is no configuration constructor for such a degenerate configuration. Requiring a 
portal term ensures that there is a configuration constructor for configurations which otherwise have only a single object or message.
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mod HELLO is
including STD-STREAM .

op myClass : -> Cid .
op myObj : -> Oid .
op run : -> Configuration .

var O : Oid .
var A : AttributeSet .
var S : String .
var C : Char .

eq run
= <>

< myObj : myClass | none >
getLine(stdin, myObj, "What is your name? ")

.
rl < myObj : myClass | A >

gotLine(myObj, O, S)
=> < myObj : myClass | A >

if S =/= ""
then write(stdout, myObj, "Hello " + S)
else none
fi .

endm

Fig. 20. HELLO module.

mod FILE is
including COMMON-MESSAGES .
protecting INT .
...
op file : Nat -> Oid [ctor] .

op openFile : Oid Oid String String -> Msg [ctor msg ...]
.

op openedFile : Oid Oid Oid -> Msg [ctor msg ...] .

op getLine : Oid Oid -> Msg [ctor msg ...] .
op getChars : Oid Oid Nat -> Msg [ctor msg ...] .
op gotChars : Oid Oid String -> Msg [ctor msg ...] .
op flush : Oid Oid -> Msg [ctor msg ...] .
op flushed : Oid Oid -> Msg [ctor msg ...] .
...
op closeFile : Oid Oid -> Msg [ctor msg ...] .
op closedFile : Oid Oid -> Msg [ctor msg ...] .

op fileError : Oid Oid String -> Msg [ctor msg ...] .
op fileManager : -> Oid [special (...)] .

endm

Fig. 21. Fragment of the FILE module (notice the ellipses).

receive messages, and an initial message to open the original file. Once it is opened, the new file is created. Notice the "w"
argument of the openFile message. Once both files are opened, a loop in which a line is read from the original file and 
written in the copy file is initiated. This loop ends when the end of the file is reached. Both files are then closed.

5.2.3. Socket I/O
Maude’s support for sockets works in a similar way to that for files. There is a unique object, socketManager, defined 

in a module SOCKET, and messages to this object can be used to create client or server TCP internet sockets. This feature is 
crucial to deploy a Maude concurrent object system as a distributed system. Consider, for example, a configuration containing 
1,000 Maude objects. They of course can be run on a single Maude interpreter, but then rewrites corresponding to message 
sends and receives are necessarily sequentialized by the interpreter. That is, concurrency is only simulated that way as an 
interleaving of rewrite steps. Using sockets we can easily distribute those 1,000 Maude objects into, say, 10 machines, each 
running its own Maude interpreter and holding a configuration of, say, 100 objects. The number of objects is immaterial 
and is just given for concreteness’ sake; furthermore, new objects can be created and destroyed, and Maude objects may 
communicate not just with other Maude objects but also with various external objects. The three key conceptual points to 
keep in mind are: (1) now the configuration or “soup” of 1,000 objects and messages has been distributed into 10 such 
soups distributed over 10 machines and communicating through sockets; (2) message passing communication between 
Maude objects belonging to one of those 10 sub-configurations will happen as usual by rewriting performed by the Maude 
interpreter for that configuration; (3) instead, a message generated in sub-configuration, say, number 2 but addressed to 
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fmod MAYBE{X :: TRIV} is
sort Maybe{X} .
subsort X$Elt < Maybe{X} .
op null : -> Maybe{X} .

endfm

view Oid from TRIV to CONFIGURATION is
sort Elt to Oid .

endv

mod COPY-FILE is
inc FILE .
pr MAYBE{Oid} .

op myClass : -> Cid .
op myObj : -> Oid .
ops in:_ out:_ : Maybe{Oid} -> Attribute .
ops inFile:_ outFile:_ : String -> Attribute .

op run : String String -> Configuration .
vars Text Original Copy : String .
vars FHIn FHOut : Oid .
var Attrs : AttributeSet .

eq run(Original, Copy)
= <>

< myObj : myClass | in: null, inFile: Original,
out: null, outFile: Copy >

openFile(fileManager, myObj, Original, "r") .
rl < myObj : myClass | in: null, outFile: Copy, Attrs

>
openedFile(myObj, fileManager, FHIn)

=> < myObj : myClass | in: FHIn, outFile: Copy, Attrs
>

openFile(fileManager, myObj, Copy, "w") .
rl < myObj : myClass | in: FHIn, out: null, Attrs >

openedFile(myObj, fileManager, FHOut)
=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >

getLine(FHIn, myObj) .
rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >

gotLine(myObj, FHIn, Text)
=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >

if Text == ""
then closeFile(FHIn, myObj)

closeFile(FHOut, myObj)
else write(FHOut, myObj, Text)
fi .

rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >
wrote(myObj, FHOut)

=> < myObj : myClass | in: FHIn, out: FHOut, Attrs >
getLine(FHIn, myObj) .

rl < myObj : myClass | in: FHIn, out: FHOut, Attrs >
closedFile(myObj, FHIn)
closedFile(myObj, FHOut)

=> none .
endm

Fig. 22. File copy with external objects.

another object in sub-configuration number 8 will be: (i) transformed into a string, (ii) sent through a socket linking those 
two configurations, (iii) transformed back into a message in sub-configuration 8, and (iv) delivered to the addressee object 
there, that will then consume it by an appropriate rewrite rule.

A fragment of this module is shown in Fig. 23. Note that a number of details, such as DNS look-up, are hidden by the
createClientTcpSocket, which just takes a domain name and a port number. For additional details on socket external 
objects in Maude see [24,28].

Further Reading. The two most complete references for the semantics of object-based systems in Maude are probably [92,
28]. How meta-objects that can control other objects (or entire object sub-configurations) in “Russian dolls” distributed 
architectures can easily be defined in Maude is explained in [110]. The specification of real-time concurrent object systems 
in the Real-Time Maude extension is discussed in [113]. An interesting application using sockets to specify and deploy a 
mobile version of Maude called Mobile Maude is described in [42,49].
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mod SOCKET is
protecting STRING .
including CONFIGURATION .

op socket : Nat -> Oid [ctor] .

op createClientTcpSocket : Oid Oid String Nat -> Msg [ctor msg ...] .
op createServerTcpSocket : Oid Oid Nat Nat -> Msg [ctor msg ...] .
op createdSocket : Oid Oid Oid -> Msg [ctor msg ...] .

op acceptClient : Oid Oid -> Msg [ctor msg ...] .
op acceptedClient : Oid Oid String Oid -> Msg [ctor msg ...] .
op send : Oid Oid String -> Msg [ctor msg ...] .
op sent : Oid Oid -> Msg [ctor msg ...] .
op receive : Oid Oid -> Msg [ctor msg ...] .
op received : Oid Oid String -> Msg [ctor msg ...] .
op closeSocket : Oid Oid -> Msg [ctor msg ...] .
op closedSocket : Oid Oid String -> Msg [ctor msg ...] .

op socketError : Oid Oid String -> Msg [ctor msg ...] .
op socketManager : -> Oid [special (...)] .

endm

Fig. 23. Fragment of the SOCKET module (notice the ellipses).

6. B-unification, variants, and E ∪ B-unification

Maude’s predecessors envisioned the inclusion of several symbolic features which were never included in Maude until 
quite recently: (i) Eqlog [65] envisioned an integration of order-sorted equational logic with Horn logic, providing logical 
variables, constraint solving, and automated reasoning capabilities on top of order-sorted equational logic (see Section 8.4 for 
an actual Eqlog interpreter); and (ii) MaudeLog [91] envisioned an integration of order-sorted rewriting logic with queries 
including logical variables. Among the many symbolic reasoning features that can be supported by Maude, in this paper we 
focus on order-sorted equational unification (this section) and order-sorted narrowing-based symbolic reachability analysis 
(Section 7). For a broader discussion of other symbolic reasoning methods and tools in rewriting logic and Maude, see 
Section 9 and [101,103].

At first sight, adding symbolic reasoning capabilities to Maude might seem like an incremental improvement; but this is 
not at all the case. Let us focus, for the moment, on what it means to add equational unification. Order-sorted unification 
modulo axioms first became available as a built-in feature in 2009 as part of the Maude 2.4 release [25], which supported 
any combination of order-sorted symbols declared to be either free or associative-commutative (AC). Unification was up-
dated in 2011 as part of the Maude 2.6 release [41]. Built-in equational unification was extended to allow any combination 
of symbols being either free, commutative (C), associative-commutative (AC), or associative-commutative with an identity 
symbol (ACU). The performance was dramatically improved, allowing further development of other techniques in Maude. As 
we explain below, built-in order-sorted unification has been further extended later to allow associativity-only (A) as well as 
identity (U) axioms. This all means that for axioms B including combinations of these axioms, equational unification in an 
order-sorted theory (�, B) is supported by Maude.

The next natural but highly non-trivial step is supporting equational unification in order-sorted theories of the form 
(�, E ∪ B), where the equations E oriented as rules are convergent modulo such axioms B . This is highly non-trivial because, 
although it is well-known that narrowing with the equations E modulo axioms B provides a complete E ∪ B-unification 
semi-algorithm [74], the prospects of obtaining a practical equational unification algorithm in this general setting looked 
rather dim for the following reasons: (i) without an efficient E, B-narrowing strategy the compounded combinatorial explo-
sion of B-unification and unrestricted E, B-narrowing would make such a semi-algorithm hopeless; (ii) almost nothing was 
known about E, B-narrowing strategies for B �= ∅; and (iii) almost nothing was known about termination results for complete 
E, B-narrowing strategies for B �= ∅ that would make the (in general undecidable) E ∪ B-unification semi-algorithm into a 
decidable unification algorithm. The key concepts making it possible to break through these daunting obstacles have been 
those of variant [34], and of folding variant narrowing and variant unification [60]. The introduction of these variant-based 
concepts in Maude (see Sections 6.2–6.3 below) has led to a drastic improvement in Maude’s symbolic reasoning capabili-
ties: variant generation, variant-based E ∪ B-unification, and symbolic reachability based on variant-based E ∪ B-unification 
became all available for the first time. Initially, all the variant-based features were only available in Full Maude, and only 
for a restricted class of theories called strongly right irreducible. However, all these variant-based features are now efficiently 
supported in Core Maude as explained in Sections 6.2–6.3.

Order-sorted unification modulo axioms B was extended again in 2016 as part of the Maude 2.7 release [39]. First, the 
built-in unification algorithm allows any combination of symbols being free, C, AC, ACU, CU (commutativity and identity), 
U (identity), Ul (left identity), and Ur (right identity). Second, variant generation and variant-based unification were imple-
mented as built-in features in Maude. This built-in implementation works for any convergent theory modulo the axioms 
described above, both allowing very general equational theories (beyond the strongly right irreducible ones) and boosting 
the performance not only of these features but of their applications. B-unification has been recently further extended to the 
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associative case as part of the Maude 2.7.1 release [40]. This is a key contribution because associative unification is infinitary 
in general and the development of an efficient and effective in practice associative unification algorithm that furthermore 
supports order-sorted typing and combination with any other symbols either free or themselves combining some A and/or 
C and/or U axioms, has been a highly non-trivial challenge. A key concern in meeting this challenge has been the iden-
tification of a fairly broad class of unification problems appearing in many practical applications for which our algorithm 
is guaranteed to terminate with a finite and complete set of unifiers. To deal with the possibility that a given unification 
problem may have an infinite minimal complete set of unifiers, or that the problem is outside the class for which the algo-
rithm is known to be complete, the algorithm can return a finite set of unifiers with an explicit warning that such a set may 
be incomplete. In a good number of applications where we have used these new associative symbolic features of Maude, 
unification problems falling outside the class supported by our algorithm in a complete way often do not even arise14 in 
practice.

6.1. Order-sorted unification modulo axioms B

Maude currently provides an order-sorted B-unification algorithm for all order-sorted theories (�, B) such that the order-
sorted signature � is preregular modulo B (see [47, Footnote 2]) and the axioms B associated to function symbols can be 
any combination of: (i) iter equational axioms, which can be declared for some unary symbols15; (ii) comm (C) com-
mutativity axioms; (iii) assoc (A) associativity axioms; and (iv) id: identity axioms (U) as well as the left id: left 
identity axioms (Ul) and the right id: right identity axioms (Ur), except for the following combinations not currently 
supported: assoc id, assoc left id, and assoc right id. However, these three remaining subcases are easily 
supported by turning the respective identity axioms into oriented equations and then using variant unification modulo the 
remaining axioms B (see Section 6.2). Maude provides a B-unification command of the form

unify [n] in 〈ModId〉 : 〈Term-1〉 =? 〈Term’-1〉 /\ .../\ 〈Term-k〉 =? 〈Term’-k〉 .

where k ≥ 1, n is an optional argument providing a bound on the number of unifiers requested, and ModId is the module 
where the command takes place. The unification infrastructure now supports the notion of incomplete unification algorithms 
(e.g. for associative unification).

Let us show some examples of unification with an associative attribute, which is the last feature available in Maude 2.7.1. 
See [24] for more examples of unification modulo axioms.

Consider a very simple module where the symbol _._ is associative:

fmod UNIFICATION-A is
protecting NAT .
sort NList .
subsort Nat < NList .
op _._ : NList NList -> NList [assoc] .
vars X Y Z P Q : NList .

endfm

Even if associative unification is infinitary (we include concrete examples below) there are many realistic unification prob-
lems that are still finitary. The following unification problem returns five unifiers:

Maude> unify in UNIFICATION-A : X . Y . Z =? P . Q .

Solution 1
X:NList --> #1:NList . #2:NList
Y:NList --> #3:NList
Z:NList --> #4:NList
P:NList --> #1:NList
Q:NList --> #2:NList . #3:NList . #4:NList

Solution 2
X:NList --> #1:NList
Y:NList --> #2:NList . #3:NList
Z:NList --> #4:NList
P:NList --> #1:NList . #2:NList
Q:NList --> #3:NList . #4:NList

Solution 3
X:NList --> #1:NList
Y:NList --> #2:NList
Z:NList --> #3:NList . #4:NList
P:NList --> #1:NList . #2:NList . #3:NList
Q:NList --> #4:NList

14 The Maude-NPA protocol analyzer has already been tested with various protocols using associative operators without encountering any incompleteness 
warnings (see [68]).
15 The iter, or iterated operator, theory is a built-in mechanism that allows the efficient input, output, and manipulation of very large stacks of a unary 

operator, see [24].
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Solution 4
X:NList --> #1:NList
Y:NList --> #2:NList
Z:NList --> #3:NList
P:NList --> #1:NList . #2:NList
Q:NList --> #3:NList

Solution 5
X:NList --> #1:NList
Y:NList --> #2:NList
Z:NList --> #3:NList
P:NList --> #1:NList
Q:NList --> #2:NList . #3:NList

The above output illustrates how fresh variables, not occurring in the original unification problem, are introduced by Maude 
by using the notation #N:Sort.

One possible condition for finitary associative unification (see [40] for further details) is having linear (i.e., unrepeated) 
list variables, as in the example above. On the other hand, the unification problem may not be linear, but it may be easy to 
detect that there is no unifier, e.g. it is impossible to unify a list X concatenated with itself with another list Y concatenated 
also with itself but with a natural number, e.g. 1, in between.

Maude> unify in UNIFICATION-A : X . X =? Y . 1 . Y .
No unifier.

When nonlinear variables occur on both sides of an associative unification problem, Maude always ensures termination, 
but sometimes raises an incompleteness warning. Several cases are possible (see [40] for further details):

1. One or more cycles are detected, but they do not give rise to unifiers.

Maude> unify in UNIFICATION-A : 0 . Q =? Q . 1 .
No unifier.

2. There is at least one cycle that produces an infinite family of most general unifiers. In this case a warning will be issued 
and only the acyclic solutions are returned.

Maude> unify in UNIFICATION-A : 0 . X =? X . 0 .
Warning: Unification modulo the theory of operator _._
has encountered an instance for which it may not be complete.

Solution 1
X:NList --> 0
Warning: Some unifiers may have been missed due to incomplete
unification algorithm(s).

Note that the unification problem 0.X=? X.0 has an infinite family of most general unifiers {X �→ 0n} for 0n being a 
list of n consecutive 0 elements.

3. There is at least one nonlinear variable with more than two occurrences and Maude will use a depth bound rather than 
cycle detection. If the search tree grows beyond the depth bound, the offending branches will be pruned, and a warning 
will be given.

Maude> unify in UNIFICATION-A : X . X . X =? Y . Y . Z . Y .
Warning: Unification modulo the theory of operator _._
has encountered an instance for which it may not be complete.

Solution 1
X:NList --> #1:NList . #1:NList . #1:NList . #1:NList
Y:NList --> #1:NList . #1:NList . #1:NList
Z:NList --> #1:NList . #1:NList . #1:NList

Solution 2
X:NList --> #1:NList . #1:NList . #1:NList
Y:NList --> #1:NList . #1:NList
Z:NList --> #1:NList . #1:NList . #1:NList

Solution 3
X:NList --> #1:NList . #1:NList
Y:NList --> #1:NList
Z:NList --> #1:NList . #1:NList . #1:NList
Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

As many other Maude commands, unification commands can also be performed as metalevel operations in the META-
LEVEL module described in Section 8. See [24] for details on the metalevel commands for unification, which are extended 
with a new constant noUnifierIncomplete, and additional warnings generated during associative unification.
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fmod EXCLUSIVE-OR is
sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op mt : -> NatSet [ctor] .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .
vars X Y Z U V : [NatSet] .
eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

Fig. 24. EXCLUSIVE-OR module.

6.2. Variants

Consider a term t in a convergent order-sorted equational theory (�, E ∪ B) where the equations E are assumed uncon-
ditional. Intuitively, a variant of t [34] is the normal form u of an instance tθ of t by a substitution θ , which is computed 
by simplification with E modulo B . For example, for the unsorted signature � = {0, s, +} of addition in the Peano natural 
numbers, with E = {x + 0 = x, x + s(y) = s(x + y)} and B = ∅, the terms x and s(x + y′) are variants of the term x + y
for the respective substitutions θ1 = {y �→ 0} and θ2 = {y �→ s(y′)}. Technically, it is useful to tighten the notion of vari-
ant in two ways [60]: (i) by viewing a variant of t as a pair (u, θ) instead of just a normal form u of an instance term 
tθ , and (ii) by requiring, without any real loss of generality, that the substitution θ is in normal form, i.e., that for each 
variable x, the term θ(x) is in normal form. Of course, some variants are more general than others. For example, among the 
variants of x + y, (x, {y �→ 0}) is more general than (s(x′), {x �→ s(x′), y �→ 0}), and (s(x + y′), {y �→ s(y′)}) is more general 
than (s(s(x′) + y′), {x �→ s(x′), y �→ s(y′)}). The general definition for (�, E ∪ B) is that a variant (u, θ) of t is more gen-
eral than another variant (v, η) of t iff there is a substitution γ such that: (i) uγ =B v , and (ii) for each variable z in t , 
γ (θ(z)) =B η(z).

A convergent order-sorted theory (�, E ∪ B) is said to have the finite variant property (FVP) [34,60] iff each �-term t has 
a finite set of most general variants. We can illustrate this property both by its absence and by its presence. For example, 
E = {x + 0 = x, x + s(y) = s(x + y)} is not FVP, since (x + y, id), (s(x + y1), {y �→ s(y1)}), (s(s(x + y2)), {y �→ s(s(y2))}), . . ., 
(sn(x + yn), {y �→ sn(yn)}), . . ., are all incomparable variants of x + y. Instead, the following theory is FVP:

Example 10. Consider the equational theory for exclusive or in module EXCLUSIVE-OR of Fig. 24. The attribute variant
specifies that these equations will be used for variant generation and variant-based unification. The owise attribute for 
equations should never be used in variant equations.

Given the term X * Y, we can construct several of its variants as follows:

1. The pair (s(0) ∗ s(0), {X �→ s(0), Y �→ s(0)}) is normalized into (mt, {X �→ s(0), Y �→ s(0)}) since the term s(0) * s(0) is 
simplified into mt;

2. The pair (s(0) ∗ U ∗ s(0), {X �→ s(0) ∗ U , Y �→ s(0)}) is normalized into (U , {X �→ s(0) ∗ U , Y �→ s(0)}), and;
3. The pair (s(0) ∗ U ∗ s(0) ∗ V , {X �→ s(0) ∗ U , Y �→ s(0) ∗ V }) is normalized into (U ∗ V , {X �→ s(0) ∗ U , Y �→ s(0) ∗ V }).

As claimed above, the module EXCLUSIVE-OR is FVP. But how can we know this? The answer is very simple. Maude 
provides a variant generation command of the form:

get variants [n] in 〈ModId〉 : 〈Term〉 .

where n is an optional argument providing a bound on the number of variants requested, so that if the cardinality of the 
set of variants is greater than the specified bound, the variants beyond that bound are omitted; and ModId is the module 
where the command takes place.

Now, as proved in [22], a convergent theory (�, E ∪ B) is FVP iff for each of its function symbols f , say, f : s1 . . . sn →
s, the term f (x1, . . . xn) with xi of sort si , 1 ≤ i ≤ n, has a finite number of variants. Therefore, we can check that the
EXCLUSIVE-OR module of Fig. 24 has the finite variant property by simply generating the variants for the exclusive-or 
symbol.
Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1:[NatSet] X --> %1:[NatSet]
Y --> #2:[NatSet] Y --> mt

Note that all other symbols f in this module, except the exclusive or symbol, are constructors and therefore have the single, 
trivial variant ( f (x1, . . . xn), id), where id denotes the identity substitution.

The above output illustrates a difference between unifiers returned by the built-in unification modulo axioms and sub-
stitutions (or unifiers) returned by variant generation or variant-based unification: there are two forms of fresh variables, 
the former #n:Sort and the new %n:Sort. Note that the two forms have different counters.
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fmod NAT-FVP is
protecting TRUTH-VALUE .
sorts Nat NzNat Zero .
subsorts Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op 1 : -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0 prec 33] .
op _+_ : NzNat NzNat -> NzNat [ctor assoc comm id: 0 prec 33] .
op p : NzNat -> Nat . *** predecessor
op max : Nat Nat -> Nat [comm] .
op max : NzNat NzNat -> NzNat [comm] .
op min : Nat Nat -> Nat [comm] .
op min : NzNat NzNat -> NzNat [comm] .
op d : Nat Nat -> Nat [comm] . *** symmetric difference
op _\_ : Nat Nat -> Nat . *** monus
op _~_ : Nat Nat -> Bool [comm] . *** equality predicate
op _>_ : Nat Nat -> Bool .

vars N M : Nat .
vars N’ M’ K’ : NzNat .

eq p(N + 1) = N [variant] .
eq max(N + M, N) = N + M [variant] .
eq min(N + M, N) = N [variant] .
eq d(N + M, N) = M [variant] .
eq (N + M) \ N = M [variant] .
eq N \ (N + M) = 0 [variant] .
eq N ~ N = true [variant] .
eq (N + M’) ~ N = false [variant] .
eq M + N + 1 > N = true [variant] .
eq N > N + M = false [variant] .

endfm

Fig. 25. NAT-FVP module.

The FVP property is extremely useful. For example, we show in Section 6.3 below that if (�, E ∪ B) is FVP and B has a 
finitary B-unification algorithm, then there is also a, variant-based, finitary E ∪ B-unification algorithm. But how common 
is it for a convergent theory to be FVP? Certainly not so common, but more common than one might think. Roughly 
speaking, recursive equations such as, for example, the addition equation x + s(y) = s(x + y) push a theory outside the 
FVP fold. This seems quite restrictive; but one can easily overlook the power of equational simplification modulo axioms 
such as associativity and commutativity (AC). Specifying a function with equations modulo AC can quite often make, what 
would typically require a recursive function definition without using AC, into a non-recursive one. For example, we can 
extend the above example of Peano addition with a new sort Bool and a strict order predicate > defined by equations: 
{0 > x = false, s(x) > 0 = true, s(x) > s(y) = x > y}, which are unavoidably recursive in this representation. However, > and 
various other arithmetic functions are part of an FVP theory when we define them modulo ACU by representing the natural 
numbers with constants 0 and 1, and an ACU binary constructor +, so that 3 is represented as 1 + 1 + 1. Then we can 
define, in a non-recursive way, arithmetic functions such as: p for the predecessor function, max (resp. min) for the biggest 
(resp. smallest) of two numbers, \ for the “monus” function, d for the symmetric difference function, > for the strict order 
predicate, and ~ for the equality predicate, yielding the FVP theory in Fig. 25. We can check that it is FVP by computing 
the variants of its function symbols. For example, the generation of variants for the following terms all stop with a finite 
number of variants:

Maude> get variants in NAT-FVP : N \ M . --- 3 variants
Maude> get variants in NAT-FVP : N ~ M . --- 4 variants
Maude> get variants in NAT-FVP : N > M . --- 3 variants

As shown in [51], this FVP example (borrowed from [51]) can be easily extended to an even richer FVP example INT-
FVP where all the above functions (except monus, which is superseded by actual integer difference using unary minus and 
+) are extended to the integers, and an absolute value function on integers is added.

Another interesting feature is that variant generation is incremental. In this way we are able to support general convergent 
equational theories (�, E ∪ B) that need not be FVP, so that a term t may have an infinite number of variants. Let us consider 
the Maude specification NAT-VARIANT, given in Fig. 26, of our previous functional module for natural number addition in 
Peano notation that we already know does not have the finite variant property.

On the one hand, it is possible to have a term with a finite number of most general variants although the theory is not 
FVP. For instance, the term X + s(0) has the single variant s(X).

Maude> get variants in NAT-VARIANT : X + s(0) .
Variant 1
Nat: s(#1:Nat)
X --> #1:Nat
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fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat .
eq [base] : X + 0 = X [variant] .
eq [ind] : X + s(Y) = s(X + Y) [variant] .

endfm

Fig. 26. NAT-VARIANT module.

On the other hand, we can incrementally generate the variants of a term that we suspect does not have a finite number of 
most general variants. For instance, the term s(0) + X has an infinite number of most general variants. In such a case, 
Maude can either output all the variants to the screen (and the user can stop the process whenever she wants), or generate 
the first n variants by including a bound n in the command.

Maude> get variants [10] in NAT-VARIANT : s(0) + X .
Variant 1 Variant 10
Nat: s(0) + #1:Nat ......................... Nat: s(s(s(s(s(0)))))
X --> #1:Nat X --> s(s(s(s(0))))

A third approach, particularly when we are not sure whether a term has a finite number of variants, is to incrementally 
increase the bound and, if we obtain a number of variants smaller than the bound, then we know for sure that it had a 
finite number of most general variants.

6.3. Equational narrowing, folding variant narrowing, and E ∪ B-unification

Variant generation relies on folding variant narrowing [60], which we informally describe in this section. Since folding 
variant narrowing is a narrowing strategy (more on this below), we begin by explaining16 unrestricted equational narrowing
in a convergent order-sorted equational theory (�, E ∪ B). Recall from Section 2.2, that in ordinary rewriting with the 
oriented equations �E modulo B , to perform a rewrite t →�E,B t′ one must choose a subterm t|p of the subject term t , a rule 
l → r in �E and a substitution σ such that: (i) t|p matches l modulo B with σ , i.e., t|p =B lσ , and (ii) t′ = t[rσ ]p . Instead, 
in narrowing a term t with the oriented equations �E modulo B , one must choose a subterm t|p of the subject term t , a 
rule l → r in �E , and a unifier σ modulo B of the equation t|p = l, i.e., a substitution σ such that σ(t|p) =B σ(l). Then, the 
analogous of the rewrite relation t →�E,B t′ is the narrowing with �E modulo B relation t ��E,B t′ , where t′ = (t[r]p)σ .

Consider the functional module NAT-VARIANT of Fig. 26, the term s(0) + X and the two equations base and ind. 
Narrowing will instantiate17 variable X with 0 and s(X’), respectively. The following two narrowing steps are generated:

s(0) + X �{X �→0},base s(0)

s(0) + X �{X �→s(#1:Nat)},ind s(s(0) + #1:Nat)

Note that, for simplicity, we show only the bindings of the unifier that affect the input term. There are infinitely many 
narrowing derivations starting at the input expression s(0) + X (at each step the reduced subterm is underlined):

1. s(0) + X �{X �→0},base s(0)

2. s(0) + X �{X �→s(#1:Nat)},ind s(s(0) + #1:Nat) �{#1:Nat�→0},base s(s(0))

3. s(0) + X �{X �→s(#1:Nat)},ind s(s(0) + #1:Nat)�{#1:Nat�→s(#2:Nat)},ind s(s(s(0) + #2:Nat)) �{#2:Nat�→0},base s(s(s(0)))

And some of those, infinitely many, narrowing derivations are infinite in length, e.g. by applying rule ind infinitely many 
times:

s(0) + X �{X �→s(#1:Nat)},ind s(s(0) + #1:Nat)�{#1:Nat�→s(#2:Nat)},ind s(s(s(0) + #2:Nat))�{#2:Nat�→s(#3:Nat)},ind s(s(s(s(0) + #3:Nat)))

. . .

A narrowing path u0 �θ1 u1 . . . un−1 �θn un , n ≥ 0, is denoted u0 �∗
θ un , where θ = θ1 . . . θn is the so-called accumulated 

substitution obtained by composing the substitutions θ1, . . . , θn for each step.

16 To explain this notion, we recall the standard notation for a position p in a term t (a string of numbers characterizing the path to that position term t
seen as a tree), and of subterm t|p of t at position p (see, e.g., [35]). For example, the subterm of 0 + s(s(0)) at position 2.1 is s(0).
17 New variables in Maude are introduced as #1:Nat or %1:Nat instead of X’.
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For a convergent order-sorted equational theory (�, E ∪ B) any E ∪ B-unification problem can be reduced to a narrowing 
problem as follows:

1. we add a fresh new sort Truth to � with a constant tt;
2. for each top sort of each connected component of sorts we add a binary predicate eq of sort Truth and add to E the 

equation eq(x,x) = tt, where x has such a top sort;
3. we then reduce an E ∪ B-unification problem t =? t′ to the narrowing reachability problem

eq(t, t′) �∗ tt
modulo B in the theory extending (�, E ∪ B) with these new sorts, operators, and equations, where E and the new 
equations are used as rewrite rules.

That is, we search for all narrowing paths modulo B from eq(t, t′) to tt. The accumulated substitution θ associated to each 
such path then gives us an E ∪ B-unifier of the equation t =? t′ . However, as already pointed out, unrestricted equational 
narrowing with an equational theory (�, E ∪ B) can be very wasteful because of the compounded combinatorial explosion 
of potentially many B-unifiers at each step and the existence of many, often redundant, narrowing paths. Furthermore, only 
if all such narrowing paths terminate can we be sure to have a finite, complete set of E ∪ B-unifiers for a given unification 
problem. But, as pointed out before, modulo axioms B such as AC, unrestricted narrowing almost never terminates, so we 
are in practice condemned to an E ∪ B-unification semi-algorithm. The upshot is that unrestricted narrowing modulo B is 
actually hopeless in practice: without a suitable narrowing strategy drastically restricting the narrowing paths and able to 
detect when narrowing paths can be stopped there is no hope for a practical E ∪ B-unification semi-algorithm, and even 
less hope for a, narrowing based, E ∪ B-unification algorithm.

Folding Variant Narrowing. The folding variant narrowing strategy proposed in [60] solves all these problems in one blow. It 
furthermore provides a method to compute a complete set of variants for any convergent equational theory (�, E ∪ B) such 
that B has a B-unification algorithm. We briefly explain this strategy and how it is used by Maude to compute a complete 
set of variants of a term, and a complete set of E ∪ B-unifiers for any convergent (�, E ∪ B) having a B-unification algorithm.

Roughly speaking, given a convergent theory (�, E ∪ B), the folding variant narrowing strategy defines a subset of nar-
rowing paths, so that only those in such subset are computed. To begin with, only narrowing paths of the form u0 �∗

θ un
with un and θ normalized are considered. This exactly means that (un, θ) is a variant of u0. In fact, it is shown in [60]
that such sequences compute a complete set of most general variants of u0. But folding variant narrowing goes further in two 
ways: (i) it furthermore discards redundant narrowing paths u0 �∗

θ un , where such a path is redundant if there is another 
path u0 �∗

θ ′ u′
m such that the variant (u′

m, θ ′) is more general than the variant (un, θ). We can then “fold,” i.e., subsume, the 
less general path into the more general one; and (ii) the folding variant narrowing strategy can safely stop when all new 
paths thus computed in a breadth-first manner can be folded into previously computed paths. The following are the most 
remarkable properties about folding variant narrowing for a convergent equational theory (�, E ∪ B):

1. It computes a complete set of most general variants for any term t . In general this set may be infinite and is computed 
incrementally by Maude.

2. When the theory (�, E ∪ B) is FVP, i.e., the complete set of most general variants of any term is finite, the narrowing 
strategy terminates for any input term t .

3. Extending (�, E ∪ B) with equality operators and the constant tt as explained above, a complete set of most general 
E ∪ B-unifiers of t =? t′ is obtained as the set of all substitutions θ such that (tt, θ) belongs to the complete set of 
most general variants of the term eq(t, t′). In general this set is infinite and is computed by Maude incrementally, so 
we only have a semi-algorithm.

4. This variant-based E ∪ B-unification semi-algorithm becomes a finitary E ∪ B-unification algorithm, therefore terminating 
for any unification problem t =? t′ , iff (�, E ∪ B) is FVP.

Consider for instance a variant unification problem between terms X ∗ Y and U ∗ V in the EXCLUSIVE-OR module in 
Fig. 24, which is FVP.

Maude> variant unify in EXCLUSIVE-OR : X * Y =? U * V .
--- 57 unifiers are reported

Similarly, we can call variant unification between terms X + Y and 0, which has only one possible solution, in the NAT-
VARIANT module in Fig. 26, which is not FVP. The variant unify command terminates if we limit the number of solutions 
to 1.

Maude> variant unify [1] in NAT-VARIANT : X + Y =? 0 .

Unifier #1
rewrites: 4 in {0ms} {cpu} (0ms real) (12903 rewrites/second)
X --> 0
Y --> 0
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However, it does not terminate if we limit the number of solutions to 2, since it keeps trying to generate more and more 
solutions without being able to realize that there is only one.

Further Reading. For order-sorted unification modulo axioms B see [104,71,53]. For Maude’s order-sorted associative unifi-
cation algorithm and its combination with other axioms B see [40]. The original paper on variants is [34]. The correctness 
of the method for checking that a theory is FVP as well as several formulations of the variant notion can be found in 
[22]. Folding variant narrowing and variant unification are studied in [60]. Note that if an equational theory (�, E ∪ B)

is FVP, with a B-unification algorithm, E ∪ B-unifiability of a conjunction of equalities is decidable. Assuming non-empty 
sorts, satisfiability in the initial algebra T�/E∪B of any positive quantifier-free (QF) �-formula is then decidable. But one 
can go further. Under mild assumptions about a constructor subspecification for (�, E ∪ B) a theory-generic satisfiabil-
ity algorithm for all QF �-formulas can be given (see [102,69], and for detailed algorithms and an implementation in 
Maude [124]).

7. Narrowing with rules and narrowing search

When formally analyzing the properties of a rewrite theory (�, E ∪ B, R, φ), an important problem is ascertaining for 
specific patterns (i.e., terms with variables) t and t′ the following symbolic reachability problem:

∃X t −→∗ t′

with X the set of variables appearing in t and t′ , which for this discussion we may assume are a disjoint union of those 
in t and those in t′ . That is, t and t′ symbolically describe sets of concurrent states [ [t] ] and [ [t′] ] (namely, all the ground 
substitution instances of t , resp. t′ , or, more precisely, the E ∪ B-equivalence classes associated to such ground instances). 
And we are asking: is there a state in [ [t] ] from which we can reach a state in [ [t′] ] after a finite number of rewriting steps? 
Solving this problem means searching for a symbolic solution to it in a hopefully complete way (so that if a solution exists 
it will be found). This has the flavor of the search command, and therefore of some kind of model checking: for example, 
t′ could be a pattern describing the violation of an invariant, and t a pattern describing a set of initial states. The main 
difference (and the advantage in this case) is that with the search command we explore the concrete states reachable 
from some given concrete initial state. Instead, here we explore symbolically reachability between possibly infinite sets of 
states such as [ [t] ] and [ [t′] ]. The way we do so is by narrowing t with the rewrite rules R in the given system module 
(�, E ∪ B, R, φ), modulo the equations E ∪ B .

Provided the rewrite theory (�, E ∪ B, R, φ) is topmost (that is, all rewrites take place at the root of a term), or, as 
in the case of AC-rewriting of object-oriented systems, R is “essentially topmost,” and the rules R are coherent with E
modulo B , narrowing with the rules R modulo the equations E ∪ B (recall the definition of narrowing in Section 6.3) gives 
a constructive, sound, and complete method to solve reachability problems of the form ∃X t −→∗ t′ . That is, such a problem 
has an affirmative answer if and only if we can find a finite narrowing sequence with the rules R modulo E ∪ B of the form 
t �∗

R,E∪B u such that u and t′ are unifiable modulo E ∪ B [111]. The method is constructive, because instantiating t with 
the composition of the unifiers for each step in the narrowing sequence, plus a E ∪ B-unifier for u = t′ , gives us a concrete 
rewrite sequence witnessing the existential formula.

Of course, narrowing with R modulo E ∪ B requires performing E ∪ B-unification at each narrowing step. As explained in 
Section 6.2, E ∪ B-unification can itself be performed by folding variant narrowing with the equations E modulo B , provided 
E is convergent modulo B . Therefore, in performing symbolic reachability analysis in a rewrite theory (�, E ∪ B, R) there are 
two levels of narrowing involved: (i) narrowing with rules R modulo E ∪ B for reachability, and (ii) folding variant narrowing 
with equations E modulo B to compute the E ∪ B-unifiers needed for narrowing with R modulo E ∪ B .

Maude provides a vu-narrow command similar to the search command for rewriting. Specifically, vu-narrow
searches in a breadth-first manner for a substitution instance of the given goal pattern that can be reached by rewrit-
ing from a substitution instance of the given pattern for initial states. The general form of the command is: vu-narrow t
=>� t′ . where t is the pattern of initial states and t′ is the goal pattern. The � symbol is a place holder for the options: � =
1 (exactly one rewrite step), � = + (one or more steps), � = * (zero or more steps), and � = ! (terminating states). Since 
the narrowing search may either never terminate and/or find an infinite number of solutions, two bounds can be added to 
a vu-narrow command: one bounding the number of solutions requested, and another bounding the depth of the rewrite 
steps from the initial term t (see below).

Let us illustrate the power of performing narrowing-based reachability analysis modulo variant equations and axioms, 
including associativity. Consider the specification of a generic grammar interpreter in Maude, based on [3], given in Fig. 27. 
We define a symbol _@_ to represent the interpreter configurations, where the first underscore represents the current 
string (of terminal and non-terminal symbols), and the second underscore stands for the considered grammar. For simplic-
ity, we provide four non-terminal symbols S, A, B, and C for sort NSymbol and four terminal symbols 0, 1, 2, and the 
finalizing mark eps (the empty string) for sort TSymbol, but a parametric specification would have been more appropri-
ate.

Only those rules including the narrowing attribute are used for narrowing-based reachability analysis. Note the im-
portant fact that the string concatenation symbol __ is not just assoc, but has also eps as its identity element. This 
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mod GRAMMAR is
sorts Symbol NSymbol TSymbol String Production Grammar Conf .
subsorts TSymbol NSymbol < Symbol < String .
subsort Production < Grammar .
ops 0 1 2 eps : -> TSymbol .
ops S A B C : -> NSymbol .
op _@_ : String Grammar -> Conf .
op _->_ : String String -> Production .
op __ : String String -> String [assoc id: eps] .
op mt : -> Grammar .
op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .
vars L1 L2 U V : String .
var G : Grammar .
var N : NSymbol .
var T : TSymbol .
rl ( L1 U L2 @ (U -> V) ; G) => ( L1 V L2 @ (U -> V) ; G) [narrowing] .

endm

Fig. 27. GRAMMAR module.

means that in each narrowing step with the interpreter’s rule equational unification must be performed modulo AU and 
not just modulo A. This is not directly supported by the order-sorted B-unification of Section 6.1, but is supported by the 
variant-based E ∪ B-unification of Section 6.3. That is, AU-unification is achieved by transforming the identity property into 
the FVP variant equations:

eq eps U = U [variant] .
eq U eps V = U V [variant] .
eq V eps = V [variant] .

The interpreter can be used in two ways thanks to narrowing: to generate words of the given grammar, but also to 
parse a given string (see [20] for further references on this topic). Generating the words of a given grammar is defined by 
rewriting the configuration (S @ ) into (st @ ) where st is a string of terminal symbols using the rules of the grammar 
. For example, we have the following search query associated to a context-free grammar defining the language 0n1n:

Maude> vu-narrow [4] S @ (S -> eps) ; (S -> 0 S 1)
=>! U @ (S -> eps) ; (S -> 0 S 1) .

Solution 1 Solution 2 Solution 3 Solution 4
U --> eps U --> 0 1 U --> 0 0 1 1 U --> 0 0 0 1 1 1

Parsing a string st according to a given grammar  is defined by narrowing the configuration (N @ ) into (st @ ) 
where N is a logical variable denoting a non-terminal symbol. For example, we have the following search query:

Maude> vu-narrow [1] N @ (S -> eps) ; (S -> 0 S 1)
=>* 0 0 1 1 @ (S -> eps) ; (S -> 0 S 1) .

Solution 1
N --> S

Moreover, we can use narrowing to answer a more complex question: What is the missing production so that the string “0 0 
1" is parsed into the non-terminal symbol S?

Maude> vu-narrow [1] S @ (N -> T) ; (S -> eps) ; (S -> 0 S 1)
=>* 0 0 1 @ (N -> T) ; (S -> eps) ; (S -> 0 S 1) .

Solution 1
N --> S ;
T --> 0

And we can use any grammar, e.g. a Type-0 grammar defining the language 0n1n2n .

Maude> vu-narrow [1] N @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;
(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ;
(2 C -> 2 2)

=>* 0 0 1 1 2 2 @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;
(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ;
(2 C -> 2 2) .

Solution 1
N --> S

Note that we must restrict the search in the previous narrowing-based search commands, because narrowing does not 
terminate for these reachability problems. However, it is extremely important that no warning about A-unification incom-
pleteness is shown, ensuring that the symbolic analysis is complete modulo AU, despite associative unification being infinite 
for some uncommon cases. The key reason is that string variables (L1, L2, and U) in the transition rule are linear (L1 and
L2) or under order-sorted restrictions (U).
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7.1. Logic programming as symbolic reachability

In this section we show how narrowing-based symbolic reachability analysis can be used to provide a very simple 
alternative implementation of logic programming. The key idea is that there is a simple theory transformation:

R[_] : HornLogicTheories → RewriteTheories

so that given a logic program H we obtain an associated rewrite theory R[H] such that any query for H can be solved by a 
corresponding vu-narrow search command for R[H]. We explain and illustrate below this theory transformation.

All theories R[H] for any logic program H extend the following module LP-SEMANTICS, that imports the LP-SYNTAX
module, by adding to it the rules of R[H]. We no longer need any auxiliary unification or renaming machinery, since 
narrowing performs those automatically.

mod LP-SEMANTICS is
protecting LP-SYNTAX .

sort PredicateList .
op nil : -> PredicateList .
op _,_ : Predicate PredicateList -> PredicateList .

var PL : PredicateList .
vars X Y Z : Term .

sort Configuration .
op <_> : PredicateList -> Configuration .

For each Horn theory H , R[H] just adds to the above signature the rewrite rules into which the Horn clauses of H are 
transformed. Specifically, each logic clause P :- P1, . . . , Pn is transformed into the rewrite rule 〈P , PL〉 → 〈P1, . . . , Pn, PL〉, 
where PL is a new variable of sort PredicateList and where the leftmost predicate P is replaced by P1, . . . , Pn .

Let us illustrate how this transformation is used by means of our running logic programming example.

Example 11 (Symbolic Search LP-evaluation). For H the logic program of Example 9, R[H] adds to LP-SEMANTICS the 
following rewrite rules:

rl < ’mother(’jane, ’mike),PL > => < PL > [narrowing] .
rl < ’mother(’sally, ’john),PL > => < PL > [narrowing] .
rl < ’father(’tom, ’sally),PL > => < PL > [narrowing] .
rl < ’father(’tom, ’erica),PL > => < PL > [narrowing] .
rl < ’father(’mike, ’john),PL > => < PL > [narrowing] .
rl < ’parent(X,Y),PL > => < ’father(X,Y), PL > [narrowing] .
rl < ’parent(X,Y),PL > => < ’mother(X,Y), PL > [narrowing] .
rl < ’sibling(X,Y),PL > => < ’parent(Z,X), ’parent(Z,Y),PL >
[narrowing nonexec] .

rl < ’relative(X,Y),PL > => < ’parent(X,Z), ’parent(Z,Y),PL >
[narrowing nonexec] .

rl < ’relative(X,Y),PL > => < ’sibling(X,Z), ’relative(Z,Y),PL >
[narrowing nonexec] .

Note that Maude requires that rules with extra variables in the righthand side must be labeled with the nonexec keyword, 
even though the narrowing machinery uses them to perform narrowing steps without any problem.

We can now evaluate different queries for our example logic program H by giving the corresponding vu-narrow search 
commands for R[H] with goal < nil >.

First, whether Sally and Erica are sisters; the associated reachability graph is finite and no bound is necessary.

Maude> vu-narrow < ’sibling(’sally,’erica),nil > =>* < nil > .
Solution 1

Who are the siblings of Erica? Sally and herself.

Maude> vu-narrow < ’sibling(X,’erica),nil > =>* < nil > .
Solution 1
X --> ’sally

Solution 2
X --> ’erica

How many pairs of possible siblings are there? Sally and Sally, Sally and Erica, Erica and Sally, Erica and Erica, John and 
John, and Mike and Mike.

Maude> vu-narrow < ’sibling(X,Y),nil > =>* < nil > .
Solution 1
X --> ’sally
Y --> ’sally
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Solution 2
X --> ’sally
Y --> ’erica

Solution 3
X --> ’erica
Y --> ’sally
Solution 4
X --> ’erica
Y --> ’erica

Solution 5
X --> ’john
Y --> ’john

Solution 6
X --> ’mike
Y --> ’mike

Solution 7
X --> ’john
Y --> ’john

Are Jane and John relatives? Yes

Maude> vu-narrow < ’relative(’jane,’john),nil > =>* < nil > .
Solution 1

Who are the relatives of John? Tom and Jane.

Maude> vu-narrow [2] < ’relative(X,’john),nil > =>* < nil > .
Solution 1
X --> ’tom

Solution 2
X --> ’jane

As explained in Section 3.1, this last call produces an infinite narrowing search, so we must restrict the search, asking for 
two solutions only.

In retrospect, the deep connection between logic programming and narrowing-based reachability analysis is not sur-
prising at all: both are based on unification, and Horn clauses can easily be transformed into rules so that solving logic 
programming queries just becomes narrowing search for the < nil > list of atomic predicates. But this leaves two pending 
questions: (1) how can we mechanize the H �→ R[H] transformation; and (2) how can we obtain a programming environment
for logic programming in Maude based on narrowing? Both questions can be easily answered by a very powerful Maude 
feature, namely, reflection. In fact, Sections 8.3 and 8.4 will, respectively, answer questions (1) and (2) not just for logic 
programming, but for the much more general functional-logic programming language Eqlog [64].

Further Reading. Narrowing-based symbolic reachability analysis of concurrent systems was first studied and proved com-
plete in [111]. To ensure that the narrowing tree is finitely branching, and for performance reasons, we have here assumed 
that in the topmost rewrite theory R = (�, E ∪ B, R, φ), (i) the equations E ∪ B are FVP, and (ii) the rules R are uncon-
ditional. This of course restricts substantially the class of concurrent systems that can be symbolically model checked by 
narrowing. As explained in [103], using a semantics-preserving theory transformation and the concept of constrained nar-
rowing, restrictions (i)–(ii) can be dropped and a much wider class of systems can be symbolically model checked. Under 
the same just-mentioned assumptions (i)–(ii) on R it is possible to symbolically model check not only invariants using
vu-narrow, but arbitrary LTL formulas using Maude’s LTL logical model checker [7].

8. Reflection, META-LEVEL, and meta-interpreters

Rewriting logic is reflective [30,31], in the sense that important aspects of its metatheory can be represented at the object 
level in a consistent way. That is, the object-level representation correctly simulates the relevant metatheoretic aspects, just 
as a universal Turing machine correctly simulates any other Turing machine, including itself. This fact is systematically used 
in the design and implementation of the Maude language, making the metatheory of rewriting logic accessible to the user 
in a clear, principled, and efficient way.

Rewriting logic being reflective means that there is a finitely presented rewrite theory U in which we can represent any 
finitely presented rewrite theory R (including U itself) as a term R, any terms t, t′ in R as terms t, t′ , and any pair (R, t)
as a term 〈R, t〉, in such a way that we have the following equivalence:

R � t −→∗ t′ ⇔ U � 〈R, t〉 −→∗ 〈R, t′〉
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where R � t −→∗ t′ denotes that t rewrites into t′ using the rewrite theory R. Since U is representable in itself, we can 
have an arbitrary number of levels of reflection, giving place to what is known as a “reflective tower”:

R � t →∗ t′ ⇔ U � 〈R, t〉 →∗ 〈R, t′〉 ⇔ U � 〈U, 〈R, t〉〉 →∗ 〈U, 〈R, t′〉〉 . . .

This section explains how this is achieved in Maude through its predefined META-LEVEL and META-INTERPRETER
modules. While the META-LEVEL module provides a purely functional access to key functionality of the universal theory 
U , the META-INTERPRETER module can also handle reflective object-oriented computations that interact with the outside 
world. Indeed, the meta-interpreter manager and the created meta-interpreters are external objects like internet sockets, 
files, or standard I/O (see Section 5.2).

In a naive implementation of reflection, each step up the above reflective tower comes at considerable computational 
cost, because simulating a single step of rewriting at one level involves many rewriting steps one level up. It is therefore 
important to have systematic ways of lowering the levels of reflective computations as much as possible, so that a rewriting 
subcomputation happens at a higher level in the tower only when this is strictly necessary. In Maude, key functionality 
of the universal theory U has been efficiently implemented in the functional module META-LEVEL. This module includes 
definitions of sorts and operations for representing every element in a structured specification. For example, terms are 
metarepresented as elements of a data type Term of terms; modules are metarepresented as terms in a data type Module
of modules; and views are metarepresented as terms in a data type View of views. META-LEVEL also contains so-called 
descent functions that use the equivalences in the reflective tower from right to left to lower as much as possible the level 
of reflective computation for boosting performance. In many cases, the performance cost is just a simple, linear change of 
data representation before and after the given “descended” computation. In fact, virtually all Maude commands plus many 
metalevel operations such as unification, matching, rule application, rewriting, search, and so on, are supported one level up 
the hierarchy as descent functions. For example, metaReduce, metaRewrite, metaApply, and metaMatch are some 
of these descent functions in META-LEVEL. Furthermore, reflective operations like upModule, upTerm, downTerm, and 
other similar ones allow moving various kinds of entities one level up or down in the reflective hierarchy.

Giving a full account of the META-LEVEL module is beyond the scope of this paper. Full details can be found in [24,
28]. However, we give here a taste of how reflection is supported in Maude by: (1) explaining how a term t is meta-
represented as a meta-term t of sort Term, (2) explaining how a rewrite theory R (resp. an equational theory E ) is 
meta-represented as a term R (resp. E) of sort Module, and (3) illustrating in Section 8.3 how easy it is to define program 
transformations by reflection by means of an example transformation that mechanizes within Maude the Eqlog functional-
logic language [64].

8.1. The META-TERM module

In the META-TERM submodule of META-LEVEL, sorts and kinds are metarepresented as terms in subsorts Sort
and Kind of the sort Qid of quoted identifiers. Since characters, parentheses, brackets, and commas break iden-
tifiers in Maude, they must be escaped with back quotes. For example, ’NzNat, ’Map‘{Int‘,String‘},
and ’Map‘{Int‘,Tuple‘{String‘,Set‘{Rat‘}‘}‘} are terms of sort Sort. Similarly, ’‘[Bool‘], ’‘[List‘
{Int‘}‘] and ’‘[NzNat‘,Zero‘,Nat‘] are valid elements of the sort Kind.

A term t is meta-represented as a so-called meta-term t of the data type Term of terms. The base cases in the metarep-
resentation of terms are given by subsorts Constant and Variable of the sort Qid. Constants are quoted identifiers that 
contain the constant’s name and its type separated by a ‘.’, e.g., ’0.Nat. Similarly, variables contain their name and type 
separated by a ‘:’, e.g., ’N:Nat. Appropriate selectors then extract their names and types.

A (non-constant) function symbol is meta-represented as a quoted identifier of sort Qid. A term different from a constant 
or a variable is meta-represented by applying an operator symbol to a nonempty list of meta-terms using the constructor

op _[_] : Qid NeTermList -> Term [ctor] .

For example, the natural number term s(N) + M is meta-represented as the meta-term ’_+_[’s[’N:Nat], ’M:Nat].

8.2. The META-MODULE module

In the submodule META-MODULE of META-LEVEL, which imports META-TERM, functional and system modules, as well 
as functional and system theories, are metarepresented in a syntax very similar to their original user syntax. Given meta-
representations of sorts, operations, equations, membership axioms, and rules, modules and theories are meta-represented 
as terms of sort Module (and corresponding subsorts, like FModule for functional modules and SModule for system 
modules). For example, a system module is meta-represented using the following constructor:

op mod_is_sorts_._ _ _ _ _endm : Header ImportList SortSet
SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet
-> SModule [ctor gather (& & & & & & & &)] .

Sort Header can take as values just an identifier in the case of non-parameterized modules or an identifier together 
with a list of parameter declarations in the case of a parameterized module. Let us get a taste for how each of the different 
elements in modules and theories are meta-represented by looking at how equations are meta-represented.
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sorts Equation EquationSet .
subsort Equation < EquationSet .
op eq_=_[_]. : Term Term AttrSet -> Equation [ctor] .
op none : -> EquationSet [ctor] .
op __ : EquationSet EquationSet -> EquationSet [ctor assoc comm id: none] .

Similar definitions allow us to represent the rest of the components of modules. To get a feeling about the similarity 
between the object-level and meta-level notations, let us consider the metarepresentation of the module on the left as the 
term (called a meta-module) displayed on the right:

fmod NAT is fmod ’NAT is
pr BOOL . protecting ’BOOL .
sorts Zero Nat . sorts ’Zero ; ’Nat .
subsort Zero < Nat . subsort ’Zero < ’Nat .
op 0 : -> Zero [ctor] . op ’0 : nil -> ’Zero [ctor] .
op s : Nat -> Nat [ctor] . op ’s : ’Nat -> ’Nat [ctor] .
op _+_ : Nat Nat -> Nat [comm] . op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .
vars N M : Nat . --- no variable declarations
--- no mbs none
eq 0 + N = N . eq ’_+_[’0.Nat, ’N:Nat] = ’N:Nat .
eq s(N) + M = s(N + M) . eq ’_+_[’s[’N:Nat], ’M:Nat]

= ’s[’_+_[’N:Nat, ’M:Nat]] .
endfm endfm

To prepare the ground for our program transformation example in Section 8.3, just think for a moment about what 
a program transformation is in its simplest possible form, and why reflection should provide a powerful way of meta-
programming such transformations. In Maude, a program is a rewrite theory R. Therefore, the simplest kind of program 
transformation we can think of is some kind of function, say, Tr, that maps any rewrite theory R to its transformed theory 
Tr(R). But where does this function exist? In a stratosphere called the metalevel of rewriting logic. What reflection does 
is to bring such a stratosphere down to earth, namely, down to the META-LEVEL module. Of course, for the program 
transformation Tr to be of any use at all, it should be effective, that is, it should be a computable function. But we know 
by the meta-theorem of Bergstra and Tucker [13] that any computable function can be defined by a convergent, finite set 
of equations. Since by reflection we already have an algebraic data type of rewrite theories, namely, the data type defined 
by the META-MODULE functional module, this all means that we can meta-program any program transformation Tr of our 
choice as an equationally-defined function

op Tr : Module -> Module .

in a functional module extending META-MODULE. Let us see all this for Eqlog!

8.3. A program transformation for Eqlog

Program transformation is one of the applications of meta-programming. The following example illustrates the power 
of program transformations in a way that generalizes the program transformation H �→ R[H] from Horn clause theories to 
rewrite theories defined in Section 7.1 and illustrated in Example 11.

The generalization has to do with considering a much more general class of Horn theories, namely, order-sorted Horn 
theories with equality, which are the theories on which the Eqlog [64] functional-logic language is based. Such theories 
have the form ((�, �), E ∪ B ∪ H), where (�, E ∪ B) is a convergent order-sorted equational theory that, to make sure 
E ∪ B-unification terminates, we will assume FVP, and H is a collection of Horn clauses defined on the signature � of 
predicate symbols. We could easily define in Maude a data type whose terms are exactly (reflective versions of) such 
order-sorted Horn theories with equality, and then we could define by reflection the transformation mapping any such 
theory to a corresponding meta-module term in Maude. But there is a shortcut that we will take to ease the presenta-
tion.

The shortcut has to do with the fact that each order-sorted Horn theory with equality ((�, �), E ∪ B ∪ H) can be 
transformed into a semantically equivalent order-sorted equational theory of the form (� ∪�, E ∪ B ∪ E H ), where the predicates 
� have been transformed into additional function symbols, and the Horn clauses H into additional conditional equations E H
by: (i) adding a fresh new sort Pred of predicates to � having a constant � denoting “truth,” (ii) turning each predicate 
p in � having argument sorts s1 . . . sn into a function symbol p : s1 . . . sn → Pred, and (iii) transforming each Horn clause 
p(u) ⇐ p1(u1) ∧ . . . ∧ pn(un) into the conditional equation p(u) = � ⇐ p1(u1) = � ∧ . . . ∧ pn(un) = �. For simplicity we 
will assume that each Eqlog theory T has been specified as an equational theory of the form T = (� ∪ �, E ∪ B ∪ E H ). This 
has the advantage of allowing us to express T inside Maude as a functional module, so that our desired transformation 
T �→ R[T ] turning T into a rewrite theory can be defined as a metalevel function

op meta-R[_] : FModule -> SModule .

To illustrate these ideas, let us consider an Eqlog program that extends that of Example 9 by adding age information for 
the relatives in the example and an order predicate to compare ages. In its functional version such an Eqlog program can 
be specified as the functional module in Fig. 28.
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fmod EXAMPLE is
protecting TRUTH-VALUE .
sorts Person Nat Pred .

ops jane tom sally mike john erica : -> Person [ctor] .

op T : -> Pred [ctor] . *** true
op mother : Person Person -> Pred [ctor] .
op father : Person Person -> Pred [ctor] .
op sibling : Person Person -> Pred [ctor] .
op parent : Person Person -> Pred [ctor] .
op relative : Person Person -> Pred [ctor] .

vars X1 X2 X3 : Person .

*** Horn Clauses as conditional equations:
eq mother(jane, mike) = T .
eq mother(sally, john) = T .
eq father(tom, sally) = T .
eq father(tom, erica) = T .
eq father(mike, john) = T .
ceq sibling(X1, X2) = T
if parent(X3, X1) = T /\ parent(X3, X2) = T [nonexec] .

ceq parent(X1, X2) = T if father(X1, X2) = T .
ceq parent(X1, X2) = T if mother(X1, X2) = T .
ceq relative(X1, X2) = T
if parent(X1, X3) = T /\ parent(X3, X2) = T [nonexec] .

ceq relative(X1, X2) = T
if sibling(X1, X3) = T /\ relative(X3, X2) = T [nonexec] .

ops 0 1 : -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _>_ : Nat Nat -> Bool .
op _>=_ : Nat Nat -> Bool .

vars n m k : Nat .

eq n + m + 1 > n = true [variant] .
eq n > n + m = false [variant] .

eq n + m >= n = true [variant] .
eq n >= n + m + 1 = false [variant] .

op age : Person -> Nat .
eq age(tom)
= 1 + 1 + ... + 1 [variant] . *** 50

eq age(sally)
= 1 + 1 + ... + 1 [variant] . *** 30

eq age(john)
= 1 + 1 + ... + 1 [variant] . *** 10

eq age(jane)
= 1 + 1 + ... + 1 [variant] . *** 52

eq age(mike)
= 1 + 1 + ... + 1 [variant] . *** 32

eq age(erica)
= 1 + 1 + 1 ... + 1 [variant] . *** 28

endfm

Fig. 28. Eqlog program extending the relatives program in Example 9 (notice the ellipses).

The transformation T �→ R[T ] is in essence very simple. It has the form R : (� ∪�, E ∪ B ∪ E H ) �→ (� ∪� ∪�, E ∪ B, R[H] ∪
Req), where � adds new sorts PredList and Configuration and operator declarations <_> of sort Configuration
and nil and _,_ of sort PredList just as we did in the H �→ R[H] transformation of Section 7.1, and the Horn clauses 
H (here expressed as conditional equations E H but this is immaterial) are transformed into rewrite rules exactly as in the 
H �→ R[H] transformation. Furthermore, for each connected component, [s], other than that of Pred, a binary equality 
predicate _==_ : [s] [s] -> Pred is added to �, and a rule defining this predicate for equalities of that kind: rl < 
X:[s] == X:[s],PL > => < PL > is added to the set of rules (these are the rules denoted Req).

Given self-explanatory auxiliary functions addOps, setName, setEqs, setRls, getSorts, getEqs, getRls, and
getName, the following equation implements the T �→ R[T ] transformation:

op meta-R[_] : FModule -> SModule .
eq meta-R[M]
= addSorts(’PredList ; ’Configuration,

addOps(
op ’nil : nil -> ’PredList [none] .
op ’_‘,_ : ’Pred ’PredList -> ’PredList [none] .
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op ’<_> : ’PredList -> ’Configuration [none] .
mkEqOps(getSorts(M)),
transformEqs(
getEqs(M),
setEqs(

setRls(setName(M, qid("R[" + string(getName(M)) + "]")),
mkEqRls(getSorts(M))),

none),
M))) .

Auxiliary functions mkEqOps and mkEqRls create, given a set of sorts, the operator declarations and equations for _==_
as explained above.

op mkEqOps : SortSet -> OpDeclSet .
eq mkEqOps(S ; SS)
= if S == ’Pred

then none
else op ’_==_ : kind(S) kind(S) -> ’Pred [none] .
fi
mkEqOps(SS) .

eq mkEqOps(none) = none .

op mkEqRls : SortSet -> RuleSet .
eq mkEqRls(S ; SS)
= if S == ’Pred

then none
else rl ’<_>[’_‘,_[’_==_[qid("X:" + string(kind(S))),

qid("X:" + string(kind(S)))], ’PL:PredList]]
=> ’<_>[’PL:PredList] [narrowing] .

fi
mkEqRls(SS) .

eq mkEqRls(none) = none .

The operation transformEqs transforms equations of sort Pred into the corresponding rules:

op transformEqs : EquationSet Module Module -> Module .
op transformCd : EqCondition -> Term .
ceq transformEqs(eq T = ’T.Pred [none] . Eqs, M, M’)
= transformEqs(Eqs,

addRls(rl ’<_>[’_‘,_[T, ’PL:PredList]]
=> ’<_>[’PL:PredList] [narrowing] ., M),

M’)
if leastSort(M’, T) = ’Pred .

ceq transformEqs(ceq T = ’T.Pred if Cd [Atts] . Eqs, M, M’)
= transformEqs(

Eqs,
addRls(rl ’<_>[’_‘,_[T, ’PL:PredList]]

=> ’<_>[transformCd(Cd)] [Atts narrowing] ., M),
M’)

if leastSort(M’, T) = ’Pred .
eq transformEqs(Eqs, M, M’) = addEqs(Eqs, M) [owise] .

ceq transformCd(T = ’T.Pred /\ Cd)
= ’_‘,_[T, transformCd(Cd)]
if Cd =/= nil .

eq transformCd(T = ’T.Pred) = ’_‘,_[T, ’PL:PredList] .

Notice that rules are added to the module as they are generated. The second module does not change, it is used just for 
checking sorts.

Example 12 (Eqlog Example as Narrowing Search). Consider the functional module EXAMPLE in Fig. 28, which is the already-
discussed Eqlog program extending the relatives logic program of Example 9 with an age operation and order predicates 
to compare natural numbers. Its transformed system meta-module meta-R[EXAMPLE] obtained using the meta-R[_] 
metalevel function has (meta-represented) unconditional rewrite rules such as the following ones:

rl < mother(jane, mike), PL:PredList >
=> < PL:PredList > .

rl < sibling(X1,X2), PL:PredList >
=> < PL:PredList, parent(X3, X1), parent(X3, X2) > [nonexec] .

The system meta-module meta-R[EXAMPLE] can then be used at the metalevel to perform Eqlog-based symbolic compu-
tation for this example using narrowing search.18 For example, we can then use the metaNarrowingSearch operation 
to find persons with a father and a mother in the transformed module:

18 An alternative way of representing Eqlog programs can be found in [56] using system modules and narrowing search, and also in [57] using functional 
modules and folding variant narrowing.
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red metaNarrowingSearch(
meta-R[upModule(’EXAMPLE, true)],
’<_>[’_‘,_[’father[’X:Person, ’Y:Person],

’_‘,_[’mother[’Z:Person, ’Y:Person], ’nil.PredList]]],
’<_>[’nil.PredList],
’*,
unbounded,
’none, ---- vu-narrow folding strategy
0) .

result NarrowingSearchResult: {
’<_>[’nil.PredList],
’Configuration,
(’X:Person <- ’mike.Person ;
’Y:Person <- ’john.Person ;
’Z:Person <- ’sally.Person),

’%,
(none).Substitution,
’#

}

Or to find out that there are no fathers younger than their children:

red metaNarrowingSearch(
meta-R[upModule(’EXAMPLE, true)],
’<_>[’_‘,_[’father[’X:Person, ’Y:Person],

’_‘,_[’_==_[’_>_[’age[’Y:Person], ’age[’X:Person]], ’true.Bool],
’nil.PredList]]],

’<_>[’nil.PredList],
’*,
unbounded,
’none, ---- vu-narrow folding strategy
0) .

result NarrowingSearchResult?: (failure).NarrowingSearchResult?

8.4. An eqlog execution environment

Maude provides meta-programming facilities for the generation of execution environments for a wide variety of lan-
guages and logics. We explain here how these facilities may be used to develop a user-friendly notation for the introduction 
of Eqlog programs. We have extended Full Maude with a new module expression to be able to use Eqlog programs as 
functional modules as in Example 9 and corresponding commands to execute queries on them.

Full Maude [28] is an extension of Maude written in Maude itself using its reflective capabilities. It was developed as a 
place in which to experiment with new features, and provide facilities not yet available in the core implementation. Indeed, 
many of the features now available in Core Maude, like strategies, unification, variants, narrowing, parameterized modules, 
views, and module expressions like summation, renaming and instantiation, were available in Full Maude long before they 
were available in Maude (see, e.g., [44,38]). This same setting represents a perfect place to add new features with which to 
experiment or develop new prototypes.

The interested reader may find at http://maude .cs .illinois .edu a module extending Full Maude that provides a new module 
expression R[_] to transform an Eqlog program T already entered into Maude as a functional module into the rewrite 
theory R[T ] defined in Section 8.3, and a command solve[_]_. to get the first n solutions to a query for such an Eqlog 
program. The extension has been performed as in many previous cases; see guidelines in [48] or [28,24].

Once the module expression is available, it can be used as any other module expression in Maude, in importation 
declarations in other modules or in commands. For example, given the EXAMPLE module one can select the generated 
module with

(select R[EXAMPLE] .)

And then, at the object level, one can write commands of the form:

(solve [n] A1,...,An .)

to ask for the first n solutions to the query A1,...,An where the Ai are predicate atoms, including equality predicates of 
the form t == t′ .

We can now solve the queries in Example 12 in a more user-friendly syntax:

(solve father(X:Person, Y:Person), mother(Z:Person, Y:Person), nil .)

Solution 1
state: < nil >
accumulated substitution:
X:Person --> mike ;
Y:Person --> john ;
Z:Person --> sally
variant unifier: empty substitution

http://maude.cs.illinois.edu
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No more solutions.

(solve father(X:Person, Y:Person),
age(Y:Person) > age(X:Person) == true,
nil .)

No more solutions.

8.5. Meta-interpreters

The META-LEVEL module is purely functional. This is because all its descent functions are deterministic, even though they 
may manipulate intrinsically nondeterministic entities such as rewrite theories. For example, the metaSearch descent 
function with a bound of, say, 3, is entirely deterministic, since given the meta-representations R of the desired system 
module and t of the initial term plus the bound 3, the result yielded by search for R, t and 3 at the object level, and 
therefore by metaSearch at the metalevel, is uniquely determined.

Although META-LEVEL is very powerful, its purely functional nature means that it has no notion of state. Therefore 
reflective applications where user interaction in a state-changing manner is essential require using META-LEVEL in the 
context of additional features supporting such interaction. Until recently, all such reflective interactions were mediated by 
the built-in LOOP-MODE module [28]: a simple read-eval-print loop where a Maude user can interact from the terminal 
with a Maude module M already stored in Maude through an object (the state of LOOP-MODE) consisting of a 3-tuple that 
holds a Maude term t in module M—thought of as the current “internal state” of the loop—together with input and output 
buffers. The user interactions do change the state of that 3-tuple by consuming user input, producing output, and possibly 
changing the internal state t to a new state t′ according to the user-given rewrite rules defining the desired interaction. 
For example, Full Maude, the Eqlog extension of it presented in Section 8.4, and many other interactive Maude tools use 
suitable extensions of META-LEVEL and LOOP-MODE to support user interaction. This is adequate for many purposes, 
but limits the type of interactions to simple real-eval-print ones. Much more flexible kinds of reflective interactions are 
possible by means of Maude’s new meta-interpreters feature, in which Maude interpreters are encapsulated as external 
objects and can reflectively interact with both other Maude interpreters and with various other external objects, including 
the user.

Conceptually a meta-interpreter is an external object that is an independent Maude interpreter, complete with mod-
ule and view databases, which sends and receives messages. The module META-INTERPRETER in Maude’s standard 
prelude contains command and reply messages that cover almost the entirety of the Maude interpreter. For example, it 
can be instructed to insert or show modules and views, or carry out computations in a named module. As response, the 
meta-interpreter replies with messages acknowledging operations carried out or containing results. Meta-interpreters can 
be created and destroyed as needed, and because a meta-interpreter is a complete Maude interpreter, it can host meta-
interpreters itself and so on in a tower of reflection. Furthermore, the original META-LEVEL functional module can itself 
be used from inside a meta-interpreter.

The meta-representation of terms, modules, and views is shared with the META-LEVEL functional module. The API to 
meta-interpreters defined in the META-INTERPRETER module includes several sorts and constructors, a built-in object 
identifier interpreterManager and a large collection of command and response messages. The interpreterMan-
ager object identifier refers to a special external object that is responsible for creating new meta-interpreters in the current 
execution context. Such meta-interpreters have object identifiers of the form interpreter(n) for natural number n.

Example 13. Let us illustrate the flexibility and generality of meta-interpreters with a short example. The example, which we 
call RUSSIAN-DOLLS after the Russian nesting dolls, is shown in Fig. 29. It performs a computation in a meta-interpreter 
that itself exists in a tower of meta-interpreters nested to a user-definable depth and requires only two equations and two 
rules.

The visible state of the computation resides in a Maude object of identifier me and class User. The object holds two 
values in respective attributes: the depth of the meta-interpreter, which is recorded as a Nat, with 0 as the top level, and 
the computation to perform, which is recorded as a Term.

The operator newMetaState takes a depth and a meta-term to evaluate. If the depth is zero, then it simply returns 
the meta-term as the new meta-state. Otherwise a new configuration is created, consisting of a portal (needed for rewriting 
with external objects to locate where messages exchanged with external objects leave and enter the configuration), the 
user-visible object holding the decremented depth and computation, and a message directed at the interpreterMan-
ager external object, requesting the creation of a new meta-interpreter, and this configuration is lifted to the metalevel 
using the built-in upTerm operator imported from the functional metalevel.

The first rule of the module handles the createdInterpreter message from interpreterManager, which carries 
the object identifier of the newly created meta-interpreter. It uses upModule to lift its own module, RUSSIAN-DOLLS, 
to the metalevel and sends a request to insert this meta-module into the new meta-interpreter. The second rule handles 
the insertedModule message from the new meta-interpreter. It calls the newMetaState operator to create a new 
meta-state and then sends a request to the new meta-interpreter to perform an unbounded number of rewrites, with 
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mod RUSSIAN-DOLLS is
extending META-INTERPRETER .

op me : -> Oid .
op User : -> Cid .
op depth:_ : Nat -> Attribute .
op computation:_ : Term -> Attribute .

vars X Y Z : Oid .
var AS : AttributeSet .
var N : Nat .
var T : Term .

op newMetaState : Nat Term -> Term .
eq newMetaState(0, T) = T .
eq newMetaState(s N, T)
= upTerm(

<>
< me : User | depth: N, computation: T >
createInterpreter(interpreterManager, me, none)) .

rl < X : User | AS >
createdInterpreter(X, Y, Z)

=> < X : User | AS >
insertModule(Z, X, upModule(’RUSSIAN-DOLLS, true)) .

rl < X : User | depth: N, computation: T, AS >
insertedModule(X, Y)

=> < X : User | AS >
erewriteTerm(Y, X, unbounded, 1, ’RUSSIAN-DOLLS, newMetaState(N, T))

.
endm

Fig. 29. Nested meta-interpreter example.

external object support and one rewrite per location per traversal in the metalevel copy of the RUSSIAN-DOLLS module 
that was just inserted.

We start the computation with an erewrite command on a configuration that consists of a portal, a user object, and 
a createInterpreter message:
erewrite <>

< me : User | depth: 0,
computation: (’_+_[’s_^2[’0.Zero], ’s_^2[’0.Zero]]) >

createInterpreter(interpreterManager, me, none) .
result Configuration:
<>
< me : User | none >
erewroteTerm(me, interpreter(0), 1, ’s_^4[’0.Zero], ’NzNat)

With depth 0, this results in the evaluation of the meta-representation of 2 + 2 directly in a meta-interpreter, with no 
nesting. Passing a depth of 1 results in the evaluation instead being done in a nested meta-interpreter.
erewrite <>

< me : User | depth: 1,
computation: (’_+_[’s_^2[’0.Zero],’s_^2[’0.Zero]]) >

createInterpreter(interpreterManager, me, none) .
result Configuration:
<>
< me : User | none >
erewroteTerm(me, interpreter(0), 5,
’__[’<>.Portal,

’<_:_|_>[’me.Oid,’User.Cid,’none.AttributeSet],
’erewroteTerm[’me.Oid,’interpreter[’0.Zero],’s_[’0.Zero],
’_‘[_‘][’’s_^4.Sort,’’0.Zero.Constant],’’NzNat.Sort]], ’Configuration)

Notice here that the top level reply message erewroteTerm(...) contains a result that is a meta-configuration, which 
contains the reply ’erewroteTerm[...] meta-message from the inner meta-interpreter.

Further Reading. As already mentioned, full details can be found in [24,28]. The most complete treatment of reflection in 
both rewriting logic and membership equational logic, including proofs of correctness of the meta-representations in the 
reflective tower, can be found in [31]. About program transformations we only scratched the surface. Inside Maude they 
are generalized to module operations that make Maude user-extensible with new module composition features [46]. Outside 
Maude—or transforming programs in other logics to programs in Maude, or conversely—“program transformations” are maps 
between logics in the sense of [89] that can be implemented inside Maude when we use it as a meta-logical framework (see 
[98] and references there). Such metalevel mappings are very useful to use Maude as a formal meta-tool to build formal tools 
for many other logics (see again [98]).
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9. Tools and applications

As its title suggests, this paper has a twofold purpose. On the one hand, it tries to give a gentle introduction to Maude’s 
declarative programming style without assuming prior familiarity with the language. On the other hand, it provides, for the 
first time, a unified account of the most recent Maude features supporting symbolic computation as well as other important 
new features. To keep the paper within reasonable size bounds, other important topics already well covered in the Maude 
book [28] had to be omitted or be mentioned only in passing. In particular, two important topics have not been fully 
explained: model checking has only been treated in the form of search-based (with either the standard search command 
or with narrowing-based symbolic search) reachability analysis; and Full Maude has only made a cameo appearance through 
its extension into an Eqlog interpreter in Section 8.4. For more details on Full Maude, including its advanced features for 
object-based programming already mentioned in Section 5, we refer the reader to the detailed account in [28], and for 
how to build a wide range of formal tools as Full Maude extensions (as we did in this paper for Eqlog) to the quite useful 
methodological paper [48].

For model checking, the first important distinction to be made is between explicit-state model checking, where the 
search space of all concrete states of a system are explored, and symbolic model checking, where sets of states, as opposed 
to individual concrete states, are represented and explored symbolically. Maude supports both kinds of model checking by 
model checkers directly supported by Maude and by additional model checkers built on top of Maude. We first discuss 
Maude’s support for explicit-state model checking. Discussion of symbolic model checking is postponed until we discuss 
symbolic computation in Section 9.1.

Explicit-State Model Checking in Maude. The most basic form of explicit-state model checking has already been illustrated 
in this paper, since it is supported by the search command. Note that, as further explained and illustrated with examples 
in [28], search can be used to both verify invariants or to find violations of invariants in the following sense. Suppose that 
an invariant has been specified as a Boolean-valued predicate, say p, on states of sort State, and we wish to verify that
p holds in every state reachable from an initial state init. Then we can search for a violation of p by giving the search 
command:

search init =>* S:State s.t. p(S:State) =/= true .

If the invariant p fails to hold, it will do so for some finite sequence of transitions from init, and this will be uncovered 
by the above search command since all reachable sates are explored in a breadth-first manner. If, instead, the invariant p
does hold, two things can happen: (i) if the set of states reachable from init is finite, the search command will report 
failure to find a violation of p and therefore p holds; but (ii) if there is an infinite number of states reachable from init,
search will never terminate. Two options are then available: (ii)-(a) we can instead perform bounded model checking of p
by specifying a depth bound for the search command; or (ii)-(b), as explained in [28], it may be possible to define an 
equational abstraction [106] of the given system module by identifying states by additional equations, so that the system 
becomes finite-state and the invariant p can be verified.

Under the assumption that the set of states reachable from an initial state init is finite, Core Maude also supports 
explicit-state model checking verification of any properties in linear time temporal logic (LTL) through its LTL model checker. 
We refer to [28] for a detailed account of LTL model checking in Maude, including the use of equational abstractions [106]
to abstract an infinite-state system into a finite-state one that can actually be model checked for LTL properties. But this 
is not all. Some important system properties go beyond LTL ones. We did mention in passing properties of this kind when 
discussing the fault-tolerant communication protocol of Section 5, namely, that only under suitable object and message 
fairness assumptions could successful termination of the protocol be guaranteed. The most satisfactory way to express these 
advance properties and effectively model check them is by specifying them in the linear time temporal logic of rewriting (LTLR) 
[96] and verifying them using Maude’s LTLR model checker [10].

9.1. Symbolic reasoning: tools and applications

This paper has placed special emphasis on Maude’s novel features supporting symbolic computation, including: (i) 
B-unification and E ∪ B-unification; (ii) variants and equational narrowing with the folding variant narrowing strategy; 
and (iii) narrowing-based symbolic reachability analysis for topmost rewrite theories of the form R = (�, E ∪ B, R), where: 
(a) (�, E ∪ B) is FVP, and (b) the rules R are unconditional. The best way to understand features (i)–(iii) is to see them as 
basic building blocks on top of which a wide range of symbolic reasoning tools and applications can be built. What fol-
lows is an attempt to provide an overview of the tools and applications that support symbolic reasoning on top of features 
(i)–(iii). More detailed accounts can be found in [101,103].

Symbolic Model Checking. In complete analogy with the explicit-state case, the simplest kind of symbolic model checking 
supported by Maude is the narrowing-based symbolic reachability analysis provided by feature (iii) above. As in the explicit-
state case, such symbolic reachability analysis can be used to verify invariants. The simplest (but not the only: see below) 
way to specify invariants is by providing a finite set {u1, . . . , un} of constructor patterns, so that the invariant’s complement
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is the set of ground instances of any of those patterns. As in the explicit-state case, if an invariant fails to hold, narrowing-
based symbolic reachability analysis is guaranteed to detect the invariant’s violation at some finite depth. If, instead, the 
invariant does hold two things can happen: (i) if the narrowing-based search terminates without finding a violation, the 
invariant holds; otherwise, several possibilities remain open: (ii)-(a) perform bounded symbolic model checking by fixing a 
depth bound; (ii)-(b) use state space reduction techniques to hopefully make the number of reachable symbolic states finite; 
and (ii)-(c) use an equational abstraction, where the underlying equational theory remains FVP, in conjunction with (ii)-(b) 
to make the space of symbolic reachable states finite. In cases (ii)-(b) and (ii)-(c) full verification of the given invariant can 
be achieved.

An important domain-specific symbolic model checker also based on narrowing-based symbolic reachability analysis is 
the Maude-NPA tool for symbolic verification of cryptographic protocols [58]. The point is that a cryptographic protocol P
can be specified in Maude as a topmost rewrite theory P = (�, E ∪ B, R) whose FVP equational part (�, E ∪ B) specifies 
the algebraic properties of the protocol’s cryptographic functions. As before, security violations (invariant failures) can be 
specified by constructor patterns {u1, . . . , un} here called attack states. The strongest points of the Maude-NPA tool are 
perhaps that: (1) it has very advanced state space reduction techniques [59], so that a finite symbolic state space is actually 
reached in many cases, thus achieving full verification; and (iii) because of its support for reasoning modulo an FVP theory 
(�, E ∪ B), Maude-NPA is arguably the most general tool currently available for verifying cryptographic protocols modulo 
their algebraic properties.

In complete analogy with the explicit-state model checking case, the above narrowing-based symbolic model checking 
techniques extend to similar narrowing-based symbolic LTL model-checking techniques [7] supported by Maude’s logical LTL 
model checker available in the Maude web page. This symbolic technique has been further extended to narrowing-based 
symbolic LTLR model checking in [8]. Furthermore, symbolic methods can also be used to define predicate abstractions that can 
effectively model check LTL properties [9].

Term Pattern Predicates. If we take to heart the above-mentioned idea of describing a possibly infinite set of states by a 
finite set {u1, . . . , un} of constructor patterns, what we can arrive at is a series of increasingly more expressive languages 
for defining state predicates based on patterns. In such languages, logical operations can be effectively computed by symbolic 
techniques in a way completely similar to how operations on finite automata can effectively perform Boolean operations 
on their associated regular languages. In fact, if we have a constructor subspecification (�, E� ∪ B�) ⊆ (�, E ∪ B) such that 
(�, E� ∪ B�) is FVP, then pattern conjunction can be effectively computed by variable-disjoint E� ∪ B�-variant unification, 
and disjunction is just union of patterns. The good properties for the free case E� ∪ B� = ∅, including also negation for 
order-sorted linear patterns, have been investigated in [109]. But we can go further by considering more expressive con-
strained patterns of the form u | ϕ , where u is an �-term and ϕ is a QF �-formula, so that u | ϕ specifies the ground 
instances of u for which ϕ holds. State predicates having such constrained patterns u | ϕ as atomic predicates and closed 
under conjunction and disjunction in an effectively, symbolically computable manner have been studied in [125,103]. Such 
a language of pattern predicates is very useful to specify sets of states both in reachability logic (see below), and in the 
constrained style of narrowing-based reachability analysis defined in [103].

Another technique where pattern predicates are extremely useful is in rewriting modulo SMT [115], where sets of states 
are represented by pattern predicates u | ϕ where satisfiability of ϕ is decidable by an SMT solver. Roughly speaking, 
rewriting modulo SMT is a symbolic reachability analysis technique closely related to narrowing-based reachability analysis 
and even more so to the narrowing-based constrained reachability analysis proposed in [103]. The main differences with 
these two other approaches are: (i) instead of narrowing modulo an FVP theory E ∪ B , we perform B-matching; (ii) the 
rules R can be conditional, but their conditions are SMT-solvable formulas; and (iii) after rewriting a symbolic state u | ϕ
we accumulate SMT solvable constraints coming from a rule’s condition in the new symbolic state and check for their 
satisfiability of the new constraint.

Variant Satisfiability. As already pointed out at the end of Section 6.2, under mild conditions on the constructors of an FVP 
theory (�, E ∪ B), satisfiability of QF formulas in the initial algebra T�/E∪B is decidable by theory-generic variant satisfiability 
algorithms [102,69]. This is important, since the initial algebra T�/E∪B is the initial model of the functional module specified 
by the theory (�, E ∪ B), so that satisfiability of QF formulas in many user-defined algebraic data types can be decided this 
way. For example, satisfiability of QF formulas in the initial algebras of the NAT-FVP and INT-FVP examples discussed in 
Section 6.2 is decidable by this method, and many more examples, including parameterized data types, are given in [102,69]. 
For details on the algorithms and implementation see [124]. One tool where these satisfiability results and algorithms are 
routinely used is in the reachability logic theorem prover (more on this below).

Generalization, Homeomorphic Embedding, and Partial Evaluation. Generalization is the dual of unification. When 
B-unifying terms t and t′ we look for a term u and substitution σ such that tσ =B u =B t′σ . Instead, when we want 
to B-generalize two term patterns t and t′ we look for a term g and substitutions σ , τ of which they are instances up to 
B-equality, i.e., such that gσ =B t and gτ =B t′ . In unification we look for most general unifiers (mgu’s). Instead, in gen-
eralization we look for least general generalizers (lgg’s). The relevance of [6,2] and its associated ACUOS2 tool as a symbolic 
technique is that it supports reasoning about generalization in a setting that is both order-sorted and modulo axioms B , and 
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does so in a modular way. Specifically, the work in [6] and its Maude implementation provide a modular order-sorted equa-
tional generalization algorithm modulo B , where B can be any combination of associativity and/or commutativity and/or 
identity axioms.

The homeomorphic embedding relation u � v , where, roughly speaking, u can be obtained from v by dropping some of v ’s 
function symbols, gives a general method for stopping any sequence of terms t0, t1, . . . , tn, . . . as soon as we can find i < j
such that ti � t j . This important relation has been studied for untyped terms; but in the context of Maude we often need to 
use the homeomorphic embedding relation u � v when u and v are order-sorted terms and, furthermore, we need to reason 
not syntactically but modulo axioms B such as associativity and/or commutativity, that is, with a relation u �B v . In [4], the 
relation �B is studied and efficient algorithms for computing it are designed for Maude. They have been implemented in 
the tool HEMS.

Both order-sorted generalization modulo B and homeomorphic embedding modulo B are crucial components of a partial 
evaluator for Maude functional modules. Partial evaluation of equational specifications had never been considered before 
in the order-sorted and modulo B level of generality needed for Maude equational programs with convergent theories of 
the form (�, E ∪ B). Partial evaluation methods that can work in this very general setting (note that the usual “vanilla 
flavored” case where � is unsorted and B = ∅ is indeed a very special subcase) have been developed in [3] and have been 
implemented in Maude in the Victoria tool [5].

Theorem Provers. Using rewriting logic’s nice properties as a logical framework (see the survey [98]), the symbolic tech-
niques currently supported by Maude can be applied to a wide range of theorem provers not just for Maude and rewriting 
logic but also for many other logics. We will focus here on theorem-proving tools more closely related to Maude. To begin 
with, let us discuss tools for reachability logic. This logic was originally proposed in [118,117,131,132] as a language-generic 
approach to program verification parametric on the operational semantics of a programming language. Both Hoare logic 
and separation logic can be naturally mapped into reachability logic [118,117]. The work in [125] extends reachability logic 
from a programming-language-generic logic of programs to a rewrite-theory-generic logic to reason about both distributed 
system designs and programs, based on their rewriting logic semantics. This extension is non-trivial and requires a number 
of new concepts and results (see [125]). In particular, concepts such as: (i) constructor pattern predicates, (ii) narrowing 
with conditional rules, and (iii) variant satisfiability, go a long way in making the constructor-based version of reachabil-
ity logic proposed in [125] much more easily mechanizable by exploiting the recent symbolic features of Maude and the 
Maude-based variant satisfiability algorithms in [124]. Indeed, the work in [125] has been implemented in Maude. It was 
originally inspired by the also Maude-based work in [81], but it adds to that work a substantial number of new results and 
methods.

The most recent Maude-based work on reachability logic provers closest to the work in [125] is that in [80] and, even 
more so, in [23]. The approach in [80] adopts a semantic framework for models similar to the already-discussed work in 
[131,132], i.e., state properties are specified using matching logic and assume a given first-order logic model. Therefore, the 
semantic framework is different from the one in [125]. An important contribution of the work in [80] is its coinductive 
semantics and justification for circular co-inductive reasoning. Perhaps the recent work closest to [125] in the coinductive 
approach is that of Ciobâcă and Lucanu in [23]. In summary, for verification of reachability properties of rewrite theories 
—including Hoare logic properties as a special case—the reachability logic theorem provers in [125], [80] and [23] seem to 
be the most advanced and most promising, and all do make use of the Maude symbolic techniques described in this paper.

Last, but not least, let us mention two other theorem-proving tools. The Tamarin theorem-proving tool [88] for veri-
fication of cryptographic protocols uses Maude’s variant-generation algorithm, initially only for the Diffie-Hellman theory, 
but recently extended to finite variant theories in Maude [37]. Finally, several decision procedures for formula satisfiability 
modulo equational theories have been provided based on narrowing in the tool [133].

Further Reading for a Broader Perspective. This entire section can be misleading, since we have said nothing at all about 
many other application areas such as, for example: (i) specification and verification of programming languages based on 
their rewriting logic definitions; (ii) real-time and cyber-physical systems; (iii) probabilistic systems; (iv) logical framework 
applications; and (v) bioinformatics applications, to mention just a few areas. There is no space here for discussing tools 
and applications on all those and other areas, or just for discussing many other Maude-based tools. Fortunately, the survey 
paper [98] gives a quite complete account of this broader perspective and, in spite of being a few years old, is still a good 
starting point to obtain a broad overview of the many applications made possible by Maude.

10. Conclusions and future work

In this paper we have both tried to give an introduction to Maude that does not assume prior acquaintance with the 
language, and to describe important new features that have been added to the language since 2007, when the Maude book 
[28] appeared. Our intention has been to provide a journal-level entry point to the language as it currently exists, both for 
readers new to Maude and for readers familiar with Maude who would like to have a comprehensive explanation of these 
important new features.

In particular, we have described those features enabling Maude’s very general support for symbolic computation, including 
order-sorted unification algorithms: (i) modulo axioms B like associativity and/or commutativity and/or identity, and (ii) mod-
ulo equations E ∪ B where the equations E are convergent modulo B . Of particular importance is the existence of an infinite 
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class of theories E ∪ B (namely those having the finite variant property) for which Maude’s E ∪ B-unification algorithm 
always terminates with a complete set of most general solutions for any unification problem. Furthermore, we have also 
described Maude’s support for narrowing-based symbolic reachability analysis (that builds on the E ∪ B-unification capability). 
This functionality allows the user to leverage the power of symbolic computation to carry out symbolic model-checking 
analyses of systems that would otherwise be unfeasible due to the need to explore infinite or very large state spaces. As 
we have explained in Section 9.1, these symbolic features make possible a wide range of formal tools built using them and 
many formal analysis applications.

We also discussed Maude’s strategy language, which provides a declarative and modular way to carve out subsets of a 
system’s behavior without in any way changing the rules specifying the system.

Finally, we introduced new external objects that allow Maude specifications to interact with the external world: in-
put/output objects—the three standard IO objects and file objects (plus the prior socket objects); and a powerful new kind 
of external objects called meta-interpreters. A meta-interpreter encapsulates a Maude interpreter as an object, and can inter-
act with other stateful objects both internal and external (including other meta-interpreters).

Regarding future work, perhaps the most important symbolic computation topic missing in the present paper is SMT 
solving. We have explained in Section 9.1 that variant-based satisfiability of quantifier-free formulas for algebraic data types 
specified by functional modules having the finite variant property and satisfying mild additional assumptions is already 
available in an extension of the META-LEVEL module and is used in reachability logic theorem proving. But there is the 
additional fact that in recent years experimental versions of Maude supporting access to the CVC4 [12] and Yices [52] SMT 
solvers have been available and have been used in various applications. The main reason for not including SMT solving in 
this paper is that we are still experimenting with SMT solving features and it seems preferable to leave this topic for a 
future publication.

Without trying to be exhaustive, three future directions seem both clear and strategically important:

1. Symbolic computation. Besides further advancing Maude’s support for SMT solving, important new advances are needed 
in narrowing-based symbolic model checking and in many theorem-proving applications.

2. Distributed programming. The present, much more flexible support for interaction with external objects opens up as 
never before the possibility of a seamless and correct-by-construction passage from Maude specifications of concurrent 
object systems to their deployment as distributed systems. This can have important advantages for developing highly 
reliable distributed systems and for doing so in a fully declarative way.

3. Strategies. Now that strategies are available and efficiently supported at the Core Maude level, many applications seem 
ripe, including, for example, the following: (i) strategy-based model-checking algorithms; (ii) support for strategies in 
Maude-based theorem-proving tools; and (iii) further advances of the rewriting logic semantics project [107,108] made 
possible by using strategies in the semantic definition of languages.
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[116] G. Roşu (Ed.), Proceedings of the Seventh International Workshop on Rewriting Logic and its Applications, WRLA 2008, Budapest, Hungary, March 

29–30, 2008, Electronic Notes in Theoretical Computer Science, vol. 238(3), Elsevier, 2009.
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