
Formal Modeling and Analysis of 
Cassandra in Maude 

Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil Gupta, and 
José Meseguer

University of Illinois at Urbana-Champaign 

Presented by Jinghan Sun



The paper in a nutshell

• Presented a formal model for the Cassandra key-value store using Maude

• Formally specified and model checked Cassandra’s consistency properties

• Cassandra 

• a scalable, fault-tolerant, and distributed NoSQL database

• widely used in the industry, e.g. IBM, HP, Netflix, Facebook

• Formal analysis results

• strong consistency can be violated:

• WRITE(key, “orange”) = 1; WRITE(key, “apple”) = 1; READ(key) = “orange”.



Outline

• Background

• Cassandra model in Maude

• Consistency model check

• Formal analysis results



Cassandra Overview

• Servers store key-value pairs (k,v)

• Each k-v pair repliacated at multiple servers

• Clients can read/write k-v pairs 

• Tunable Consistency Levels

• Client can specify how many replicas need 

to answer 

• One, Quorum, All 

• An example system with 8 servers, 3 clients and

a replication factor of 3



Cassandra Overview

1. Client 1 sends a read request to its coordinator (server
7).

2. The coordinator forwards read request to replicas S1,
S3, and S4.

3. Each replica responds with a non-deterministic delay
(e.g. d(R1) < d(R4) < d(R3)).

4. The coordinator forwards the value back to client after
N replicas respond (ONE: 1, Quorum: 2, All: 3). The 
copy with the latest timestamp is taken as the true one.

5. The coordinator issues a read repair to the replica with
out-of-date value.

Server Key Value timestamp
1 k1 “red” 9.0

3 k1 “black” 10.0

4 k1 “red” 8.0

GET(k1)



Outline

• Background

• Cassandra model in Maude

• Consistency model check

• Formal analysis results



Concurrent state in Maude (lec. 12a)



Cassandra Model in Maude

• Components: clients, servers, scheduler and messages



Cassandra Model in Maude

• Client:

• op coord :_ : Address -> Attribute . --- coordinator

• op store :_ : List{Value} -> Attribute . --- value of incoming messages

• op requestQueue :_ : List{Elt} -> Attribute . --- requests ready to send out

• op lockedKey :_ : Set{Key} -> Attribute . --- set of locked keys

• op pendingQueue :_ : List{Elt} -> Attribute . --- pending requests



Cassandra Model in Maude

• Server:

• op ring :_ : Set{RingPair} -> Attribute . --- set of tokens

• op table :_ : Table -> Attribute . --- a table of k-v pairs

• op buffer :_ : LocalRequestQueue -> Attribute . --- cached requests to replica

• op delays :_ : Set{Delay} -> Attribute . --- a set of delays for outgoing msgs



Formalizing Reads and Writes

• Four Stages:

1. Client-to-Coordinator 

2. Coordinator-to-Replica

3. Replica-to-Coordinator 

4. Coordinator-to-Client and Read Repair 



Formalizing Reads and Writes

• Stage 1: Client-to-coordinator

• client trigger by the bootstrap msg

• adds key to the KS and checks if we block the current request H

• generates a message to the coordinator coord and a self-triggered bootstrap msg

T: global time
d1, d2: message delays

AS: a set of attributes
pending: op to check if key locked



Formalizing Reads and Writes

• Stage 2: Coordinator-to-replica

• the coordinator S receives the request ReadRequestCS

• S updates the request buffer

• generates messages to all the replicas holding the value of key K

• the auxiliary function replicas returns a set of replica addresses. 

ID: client request id
K: key
CL: consistency level
A: client

fac: replication factor



Formalizing Reads and Writes

• Adding delays to messages

• The coordinator non-determinisWcally selects a message delay D for each out-

going request. 

ID: request id
K: key
DS: a set of delays
AD: a set of replica addrs
S: addr of the coordinator



Outline

• Background

• Cassandra model in Maude

• Consistency model check

• Formal analysis results



Consistency Models

• Strong consistency model

• each read returns the value of the last write that occurred before that read 

• Read-your-writes

• all writes performed by a client are visible to its subsequent reads 

• Eventual consistency model

• eventually all reads to a key will return the last updated value if no new 

updates are made to the key 



Model checking using Maude

• LTL (linear temporal logic) model checking
• The semanGcs of state proposiGons is defined by

• prop evaluates to b in states that are instances of statePaWern when the condiXon cond holds 

• Model checking command

• checks whether the temporal logic formula φ (state proposiXons and temporal logical
operators) holds starXng from the iniXal state t

• Logical operators

• Boolean connecXves: True, False, ~ (negaXon), /\, \/, -> (implicaXon)

• Temporal operators : [] (“always”), <> (“eventually”), and U (“unXl”).



Formal Consistency Models

• Strong consistency

• proposition strong(client, key, value)

• holds true if we can match the value V returned by the subsequent read on 

key K in client A’s local store with that in the preceding write 



Formal Consistency Models

• Eventual consistency

• proposition eventual(r1,r2,r3,key,value)

• holds true if we can match the value V on key K in the subsequent (or the last) 

write with those in the local tables of all replicas R1, R2 and R3. 



Outline

• Background

• Cassandra model in Maude

• Consistency model check

• Formal analysis results



Formal Analysis of Consistency with One Client 

• One client, 3 replicas, 3 different consistency levels
• The client issues a write request followed by a read on same key
• The two requests could have different consistency levels

Strong Consistency Property Eventual Consistency Property



A Counterexample

client

R1
Key Value
10 “orange”

R2
Key Value
10 “orange”

R3
Key Value
10 “orange”

C

coordinator

replicas

UPDATE(10, “apple”)

• one client
• replication factor of 3
• consistency level: ONE

UPDATE

UPDATE

UPDATE

UPDATE(10, “apple”) = ?
GET(10) = ?

Key Value
10 “apple”

Key Value
10 “apple”



A Counterexample

client

R1
Key Value
10 “apple”

R2
Key Value
10 “orange”

R3
Key Value
10 “apple”

C

coordinator

replicas

• one client
• replication factor of 3
• consistency level: ONE

ACK

ACK

UPDATE

ACK

UPDATE(10, “apple”) = SUCCESS
GET(10) = ?



A Counterexample

client

R1
Key Value
10 “apple”

R2
Key Value
10 “orange”

R3
Key Value
10 “apple”

C

coordinator

replicas

GET(10)

• one client
• replicaJon factor of 3
• consistency level: ONE

READ

READ

UPDATE

READ

2nd request may reach R2 before the first one

UPDATE(10, “apple”) = SUCCESS
GET(10) = ?



A Counterexample

client

R1
Key Value
10 “apple”

R2
Key Value
10 “orange”

R3
Key Value
10 “apple”

C

coordinator

replicas

UPDATE(10, “apple”) = SUCCESS
GET(10) = “orange”
consistency violation

• one client
• replicaJon factor of 3
• consistency level: ONE

READ

READ

UPDATE

ACK

ACK





Formal Analysis of Consistency with One Client 

• Strong consistency with one client depends on the combination 
of consistency levels

• Eventual consistency with one client holds for all combinations 

• One client, 3 replicas, 3 different consistency levels
• The client issues a write request followed by a read of on same key
• The two requests could have different consistency levels



Summary

• Presented a formal model for the Cassandra key-value store using Maude

• formal models for clients, servers, schedulers and messages

• formalized read and write requests

• Formally specified and model checked Cassandra’s consistency properties

• strong consistency and eventual consistency

• Formal analysis of consistency properties

• showed that strong consistency can be violated



Backup Slides







Formalizing Reads and Writes

• Stage 3: Coordinator-to-replica



Formalizing Reads and Writes

• Stage 4: Coordinator-to-client


