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In the effort to bring rewriting-based methods into contact with practical applications both

in programing and in formal verification, there is a tension between: (i) expressiveness and

generality—so that a wide range of applications can be expressed easily and naturally— and

(ii) support for formal verification, which is harder to get for general and expressive specifica-

tions. This paper answers the challengeof successfully negotiating the tensionbetweengoals

(i) and (ii) for a wide class of Maude specifications, namely: (a) equational order-sorted con-

ditional specifications (�, E∪A), corresponding to functional programsmoduloaxiomssuch

as associativity and/or commutativity and/or identity axioms and (b) order-sorted condi-

tional rewrite theoriesR = (�, E∪A, R, φ), corresponding to concurrent programsmodulo

axioms A. For Maude functional programs the key formal property checked is the Church-

Rosser property. For concurrent declarative programs in rewriting logic, the key property

checked is the coherence between rules and equationsmodulo the axiomsA. Suchproperties

are essential, both for executability purposes and as a basis for verifying many other prop-

erties, such as, for example, proving inductive theorems of a functional program, or correct

model checking of temporal logic properties for a concurrent program. This paper develops

themathematical foundations onwhich the checkingof theseproperties (or groundversions

of them) is based, presents two tools, the Church-Rosser Checker (CRC) and the Coherence

Checker (ChC) supporting the verification of these properties, and illustrates with examples

amethodology to establish such properties using the proof obligations returned by the tools.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the effort to bring rewriting-based methods into contact with practical applications both in programing and in formal

verification, there is a tensionbetween: (i) expressiveness andgenerality—so that awide rangeof applications canbeexpressed

easily and naturally— and (ii) support for formal verification, which is harder to get for general and expressive specifications.

This paper answers the challenge of successfully negotiating the tension between goals (i) and (ii) for a wide class of

Maude specifications, namely, either: (a) conditional order-sortedequational theories (Maude functionalmodules) of the form

(�, E∪A) specifying functional programsmoduloaxiomsA suchasassociativity and/or commutativityand/or identityof some

of the function symbols in the signature�, or (b) conditional rewrite theories (Maude systemmodules)R = (�, E∪A, R, φ)
specifying concurrent programsmodulo axioms A as before, whose states are elements of the initial algebra T�/E∪A associated

to the underlying order-sorted equational theory (�, E ∪ A), and whose concurrent transitions are specified by the rules R,

which are appliedwith some frozenness restrictionsφ which, as explained in [9],may forbid rewriting under someargument

positions of a function symbol.
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Of course, different kinds of formal verificationmay be performed for an equational theory (�, E∪A) or a rewrite theory

R = (�, E∪A, R, φ). For example, wemaywant to prove inductive theorems about a functional program, or tomodel check

temporal logic properties for a concurrent declarative program. However,many verificationmethods, including the ones just

mentioned, rely on two basic properties, namely, that the equational theory (�, E ∪ A) is Church-Rosser (or at least ground
Church-Rosser)modulo the axioms A; and that the rules R in the rewrite theoryR = (�, E∪A, R, φ) are coherent (or at least
ground coherent) with the equations Emodulo the axioms A. Furthermore, even before any formal verification is attempted,

the (ground) Church-Rosser property of (�, E ∪ A) and the (ground) coherence of R = (�, E ∪ A, R, φ) are essential

executability requirements, without which the execution of (�, E∪A) as a functional program (resp., ofR = (�, E∪A, R, φ)
as a concurrent program) may yield unpredictable results. Indeed, the (ground) Church-Rosser property of a functional

program (�, E ∪ A) ensures its determinism, so that the final result of evaluating an input expression is unique if it exists.

Likewise, the (ground) coherence of a concurrent programR = (�, E∪A, R, φ) (which assumes that its functional fragment

(�, E ∪ A) is ground Church-Rosser) ensures that we can always achieve the effect of rewriting with R modulo E ∪ A by

intermingling rewriting with both E and R modulo A.

We believe that the generality and expressiveness of specifications with a rich order-sorted type structure, with con-

ditional equations and rules, and with structural axioms such as associativity and/or commutativity and/or identity is

enormously useful in practical applications (see, e.g. [10] for many examples). Therefore, we have no doubt that having

methods and tools to prove such specifications Church-Rosser (resp., coherent) will be very useful. Furthermore, the more

general some methods and tools are, the more widely applicable they become: if a specification happens to be many-sorted

or even just unsorted, since these are both special cases of the order-sorted framework, it can a fortiori be handled by the

methods and tools that we present.

One important design decision has been not to support either equational completion of an equational theory (�, E ∪ A),
or coherence completion of a rewrite theory R = (�, E ∪ A, R, φ). The reason for this decision is that the specifications

(�, E ∪ A) (resp.,R = (�, E ∪ A, R, φ)) are not arbitrary ones, such as, e.g., an arbitrary collection of equations presenting,

say, the theory of groups which one wants to complete into an equivalent confluent and terminating presentation. Instead,

suchMaude specifications are programs, which the user has presumably tested and expects they have the required (ground)

Church-Rosser (resp., (ground) coherence) properties. Therefore, the tools we present, namely the Maude Church-Rosser

Checker (CRC) tool, and the Maude Coherence Checker (ChC) tool, attempt to check such properties without performing

any completion on the given specifications. Indeed, attempting completion processes under such circumstances seems ill

advised for several reasons. Consider, for example, the case of an equational functional program (�, E ∪ A) that a user has

written and tested and now submits to the CRC tool to check that it is Church-Rosser. If the CRC returns with success all is

well. But even if the CRC returns with some unresolved proof obligations such as conditional critical pairs that it could not

join, or term memberships it could not establish, all may still be well, except that some more formal reasoning is required.

Of course, some genuine problem, such as a failure of confluence, may be uncovered by the returned proof obligations. But

this will not be the most common case, and is not an issue that can be automatically settled: judicious user intervention is

needed to decide whether either: (i) the specification is faulty and should be corrected, or (ii) the specification is correct,

but more formal reasoning is needed.

The reasons why, very often, all may be well even though the CRC or ChC tools return unresolved proof obligations are

twofold. First, since the specifications are conditional, the CRC toolmay not be able to automatically check the Church-Rosser

property (resp., the ChC tool may not be able to check the coherence property) of the given specification even though the

property holds. For example, the CRC tool may return a conditional critical pair C ⇒ s = t that could not join, but in fact, by

further reasoning we may be able to show that for all substitutions θ such that the condition Cθ holds, the terms sθ and tθ
are joinable, which is all that is needed. A second set of reasons why all may bewell even though the tools return unresolved

proof obligations is that, since the specifications are programs operating on concrete data, namely, ground terms, all that is

needed of a functional program (�, E ∪ A) is that it is ground Church-Rosser, and all that is needed of a concurrent program

R = (�, E∪ A, R, φ) is that (besides its functional fragment (�, E∪ A) being ground Church-Rosser), it is ground coherent.

That is, the proof obligations returned by the tools may hold for the ground case, but their proof may require additional

inductive reasoning.

This paper has several closely-related goals:

(1) To present the foundations of the CRC tool. This is achieved by presenting a detailed discussion of confluence and

descent for order-sorted conditional specifications modulo axioms, and proving a general theorem reducing their

confluence (resp., ground confluence) to the joinability of suitable conditional critical pairs under the assumption

that such specifications (which may have extra variables in their conditions and righthand sides) are operationally

terminating in the sense of [18], that is, terminating in the intuitive sense that an interpreter executing them will

terminate for all inputs.

(2) To present likewise the foundations of the ChC tool. This is achieved by defining in detail the notions of coherence

and ground coherence for conditional specifications, and proving how checking these properties can be reduced to

checking appropriate conditional critical pairs between conditions and rules (plus additional conditions required

in non-overlap cases). In the ground coherence case, we show how certain purely equational, inductive proof

obligations are sufficient to ensure the property.
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(3) To illustrate with examples a methodology that a user can follow in dealing with unresolved proof obligations

returned by the CRC and ChC tools, since, as mentioned above, both the conditional nature of the specifications

and the fact that often only the ground versions of the properties are really needed imply that subsequent user

intervention performing further formal reasoning may sometimes be needed.

(4) To present the CRC and ChC tools and explain their use, so that a reader of this paper gains both the necessary

theoretical understanding and all the practical knowledge needed to use the tools.

(5) To place the present work in the context of related work, both on confluence and equational completion methods,

including the ground case; and of other work on coherence checking and completion methods.

In addressing points (3) and (4), and also in explaining the foundationsmentioned in (1) and (2) above, onemore aspect of

the CRC and ChC tools becomes clear, namely, their practical effectiveness in dealingwith complex specifications. These tools

would be ineffective in practice if they were to return a large number of unresolved proof obligations. Due to the conditional

nature of the input specifications, and the presence of axioms like associativity–commutativity for which a unification

problem may have a large number of solutions, this is a real possibility: many conditional critical pairs C ⇒ s = t, such

that we cannot automatically prove s↓ t, are often generated. The effectiveness of the CRC and ChC tools resides in the

reasoning methods employed by the tools to discharge many of these unresolved critical pairs, so that in the end a relatively

small number of proof obligations is returned to the user. For example, in the hereditary finite sets specification presented

in Section 5.1, the CRC generates 1027 critical pairs, from which it can trivially discharge by reduction 1001 critical pairs,

leaving 26 left. But further automated reasoning allows the CRC to discharge 20 of these, returning only 6 unresolved proof

obligations to the user.

Yet another important feature of the CRC and ChC tools, which we illustrate with examples, such as the lists and sets

example in Section 5.2, is their capacity to deal with any combination of associativity and/or commutativity and/or identity

axioms, even though Maude’s built-in order-sorted unification algorithm does not handle associative but not commutative

symbols. For combinations where any associative symbol is also commutative, the tool’s treatment is fully general. For cases

where some symbol is associative but not commutative, it is well known that associative unification is not finitary. Yet, the

CRC and ChC tools can handle many specifications with associative and not commutative symbols by a simple check which,

if successful, allows us to replace an associativity axiom for a symbol f by either the oriented equation f (f (x, y), z) →
f (x, f (y, z)), or the oriented equation f (x, f (y, z)) → f (f (x, y), z) for analysis purposes. The general idea, also applied to

identity axioms and borrowed from [21], is to replace a specification R = (�, A ∪ B, R) where A ∪ B is a set of equational

axioms by a semantically equivalent specification R = (�, B, �A ∪ R̂), where the axioms A have been oriented as rules, and

the rules R̂ are the �A, B-variants of the original rules R. 1

The CRC and ChC tools, together with their documentation, are publicly available at http://maude.lcc.uma.es/CRChC.

The rest of the paper is structured as follows. Section 2 introduces the notion of conditional order-sorted rewriting mod-

ulo a set of linear and regular axioms. Section 3 presents the notion of Church-Rosser conditional order-sorted specification

modulo axioms, introduces key concepts such as those of strongly deterministic order-sorted equational specification, con-

ditional critical pair, and context-joinable and unfeasible conditional critical pair, and discusses the properties of confluence

and descent handled by the CRC tool. Section 4 introduces the notion of coherence of conditional rewrite theories and

discusses the theoretical basis of the ChC tool, including the use of the notions of context-joinability and unfeasibility of

conditional critical pairs in such a tool, and the very important case of ground coherence. Section 5 presents some guidelines

on how to use the tools and illustrates their use with some examples. To wrap up, Section 6 discusses related work, presents

some conclusions, and outlines some directions of future work.

2. Conditional order-sorted rewriting modulo axioms

Throughout this paper, we rely on standard terminology and theorems from the field of term rewriting (see, e.g. [3,14,15,

51,57]) and order-sorted algebras [34,48,56]. We however introduce in this section some standard notation on conditional

order-sorted rewriting modulo axioms.

We assume specifications of the formR = (�, A, R) where A is a collection of unconditional equational axioms that are

linear and regular, and R is an A-coherent set of (possibly conditional) rewrite rules (see below for further details on these

notions).

Let us start by recalling the notions of order-sorted signature, terms, regular and linear equational axioms, and sort-

decreasing and sort-preserving equations.

An order-sorted signature (�, S,≤) consists of a poset of sorts (S,≤) and an S∗ × S-indexed family of sets � =
{�s1...sn,s}(s1...sn,s)∈S∗×S of function symbols. Throughout this paper we further assume that � is preregular, so that each

term t has a least sort, denoted ls(t) (see [34]), and that � is kind-complete, that is, for each sort s ∈ S its connected

component in the poset (S,≤) has a top sort, denoted [s], and for each f ∈ �s1...sn,s there is also an f ∈ �[s1]...[sn],[s]. An
order-sorted signature can always be extended to a kind-complete one. Maude automatically checks preregularity and adds

1 See [21] for a definition of the �A, B-variants of a rule.

http://maude.lcc.uma.es/CRChC
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a new “kind” sort [s] at the top of the connected component of each sort s ∈ S specified by the user, and automatically lifts

each operator to the kind level.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables, the set T�(X )s denotes the set of �-terms

of sort s with variables in X . We denote by P(t) the set of positions of a �-term t, and by t|p the subterm of t at position p

(with p ∈ P(t)). A term t with its subterm t|p replaced by the term t′ is denoted by t[t′]p.
For an equation u = v to be well-formed, the sorts of u and v should be in the same connected component of (S,≤). For

E a set equations, [t]E denotes the equivalence class of t modulo provable E-equality [34]. An equation u = v is called regular

if Var(u) = Var(v), and linear if there are no repeated variables in either u or v. An equation u = v is called sort-decreasing

iff for eachwell-sorted substitution θ we have ls(uθ) ≥ ls(vθ), and is called sort-preserving if both u = v and v = u are sort-

decreasing. Using substitutions that specialize variables to smaller sorts (see Section 3.2), sort-decreasingness of an equation

can be easily checked. We assume throughout the paper that the equational axioms A in the specification R = (�, A, R)
are regular, linear, and sort-preserving. 2 Sort-preservingness of A is extremely useful for performing order-sorted rewriting

modulo A: when A-matching a subterm t|p against a rule’s lefthand side to obtain a matching substitution σ , we need to

check that σ is well-sorted, that is, that if a variable x has sort s, then some element in the A-equivalence class [xσ ]A has

also sort s. But by sort-preservingness of A this is equivalent to checking ls(xσ) ≤ s.

Given a set of equational axioms A, a substitution σ is an A-unifier of t and t′ if tσ =A t′σ , and it is an A-match from t to t′
if t′ =A tσ . UnifA(t, t

′) denotes a complete set of A-unifiers of t and t′; that is, UnifA(t, t′) is a set of A-unifiers of t and t′ such
that for any other A-unifier θ of t and t′ there is a τ ∈UnifA(t, t

′) and a substitution ρ such that for each x∈ Var(t)∪ Var(t′),
θ(x) =A ρ(τ(x)).

Given a rewrite theory R as above, we define the relation →R/A, either by the inference system of rewriting logic

(see [9]), or by the usual inductive description: →R/A = ⋃
n →R/A,n, where →R/A,0 = ∅, and for each n ∈ N, we have

→R/A,n+1 = →R/A,n∪{(u, v) | u =A lσ → rσ =A v∧l → r if
∧

i ui → vi ∈ R∧∀i, uiσ →∗
R/A,n viσ }. In general, of course,

given terms t and t′ with sorts in the same connected component, the problem of whether t →R/A t′ holds is undecidable.
Even if there is an effective A-matching algorithm, the relation u →R/A v still remains undecidable in general, since

to see if u →R/A v involves searching through the possibly infinite equivalence class [u]A to see whether an A-match is

found for a subterm of some u′ ∈ [u]A and the result of rewriting u′ belongs to the equivalence class [v]A. For this reason,
a much simpler relation→R,A is defined, which becomes decidable if an A-matching algorithm exists. We define (see [52])

→R,A = ⋃
n →R,A,n where→R,A,0 = ∅, and for each n ∈ N and any terms u, vwith sorts in the same connected component

the relation u →R,A,n+1 v holds if either u →R,A,n v, or there is a position p in u, a rule l → r if
∧

i ui → vi in R, and a

substitution σ such that u|p =A lσ , v = u[rσ ]p, and ∀i, uiσ →∗
R,A,n wi with wi =A viσ .

Of course,→R,A ⊆ →R/A. But the question is whether any→R/A-step can be (bi)simulated by a→R,A-step. We say that

R satisfies this A-completeness property if for any u, v with sorts in the same connected component we have:

u
R/A

��

R,A
��

v

A

v′

where here and in what follows dotted lines indicate existential quantification.

It is easy to check that A-completeness is equivalent to the following (strong) A-coherence property (which is really a

bisimulation property):

u
R/A

��

A

v

A

u′ R,A
�� v′

Lemma 1. For R a set of A-coherent rules, if t →R,A t′, then

t
R,A

��

A

t′

A

u
R,A

�� u′

2 When A is any combination of associativity and/or commutativity axioms, sort-preservingness is equivalent to the A-preregularity condition automatically

checkedbyMaude (see [10, Section22.2.5]).WhenA is any combinationof associativity and/or commutativity and/or identity axioms, theA-preregularity condition

checked by Maude is equivalent to the associativity and commutativity axioms being sort-preserving and the identity axioms f (x, 1) = x and f (1, x) = x being

sort-decreasing. However, the case of an A-preregular Maude specificationR = (�, A, R) can be reduced to that of a semantically equivalent specificationwhose

axioms are sort-preserving by either: (i) the signature completion method presented in [36]; or (ii) turning the identity axioms into rules and performing the

variant-based theory completion process described in [21].
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Proof. Since t →R,A t′ implies t →R/A t′, and u =A t and t →R/A t′ imply u →R/A t′, we have

t
R,A��

A coher.

t′

A

u

R/A

�������������������
R,A

�� u′

as desired. �

If a theoryR is not coherent, we can try tomake it so by completing the set of rules R to a set of rules R̃ by a Knuth–Bendix-

like completion procedure (see, e.g. [37,59] for the strong coherence completion thatwe use here, and [31] for the equivalent

notion of extension completion). For theories A that are combinations of associativity and/or commutativity and/or identity

axioms, we canmake any specification A-coherent by using a completion procedurewhich always terminates and has a very

simple description (see [52,10, Section 4.8] for a more informal explanation).

We say thatR = (�, A, R) is A-confluent, resp. A-terminating, if the relation→R/A is confluent, resp. terminating. IfR is

A-coherent, then A-confluence is equivalent to asserting that, for any t →∗
R,A u, t →∗

R,A v, we have:

t

R,A
∗������������

∗
R,A

������������

u

∗
R,A ��

v

∗
R,A��

w =A w′

and A-termination is equivalent to the termination of the→R,A relation.We use the notation t →!
R/A t′ (resp., t →!

R,A t′) for
a terminating rewrite, that is, a rewrite t →∗

R/A t′ (resp., t →∗
R,A t′) such that t′ is R/A-irreducible (resp., R, A-irreducible), i.e.,

�t′′ such that t′ →R/A t′′ (resp., t′ →R,A t′′). We extend this notation to substitutions to write, e.g., τ →!
R,A τ ′ for rewriting

the terms in the assignments of a substitution τ to their normal forms using→R,A, that is, τ →!
R,A τ ′ means that τ and τ ′

have the same domain, and for each variable x in that domain, τ(x) →!
R,A τ ′(x).

We say thatR = (�, A, R) isweakly terminatingmodulo A iff for each t there is a t′ such that t →!
R/A t′. IfR is A-coherent,

this is equivalent to the weak termination of→R,A.

3. Church-Rosser (conditional) order-sorted specifications modulo axioms

For order-sorted specifications, being Church-Rosser means not only confluence, but also a descent property (see Section

3.2), which ensures that for each term t we have ls(t) ≥ ls(t↓R), where t↓R denotes a term such that t →!
R,A t↓R,

which by confluence is unique up to A-equivalence. In this section we introduce the notion of Church-Rosser order-sorted

specification [34], and its generalization to the conditional and modulo case.

3.1. Strongly deterministic order-sorted equational specifications

The (oriented and conditional) order-sorted equational specifications modulo axioms A that we consider in this paper

are equational theories (�, R ∪ A) that are oriented as rewrite theories of the form R = (�, A, R), with A a set of regular,

linear, and sort-preserving axioms. The conditional equations R in (�, R ∪ A) are oriented as rewrite rules of the form

l → r if
∧

i=1..n ui → vi, and are assumed to be A-coherent. Furthermore, we assume thatR is strongly deterministic in the

following sense.

Definition 1. LetR = (�, A, R) satisfy the above assumptions. A rule l → r if
∧

i=1..n ui → vi in R is said to be deterministic

iff (i) ∀j ∈ [1..n], Var(uj) ⊆ Var(l)∪⋃
k<j Var(vk) and (ii) Var(r) ⊆ Var(l)∪⋃

j≤n Var(vj).R is deterministic iff all its rules

are so. A term t is called strongly irreduciblewith respect to R modulo A (or strongly R, A-irreducible) iff tσ is an R, A-normal

form for every normalized substitution σ . A deterministic rewrite theory R is called strongly deterministic iff for every rule

l → r if
∧

i=1..n ui → vi in R each vi is strongly R, A-irreducible.

Note that the above notion of strongly deterministic equational specification essentially corresponds to the notion of

an admissible Maude functional module in the sense of [10, Section 4.6]. That is, an admissible conditional order-sorted

Maude functional specification can be transformed into an equivalent strongly deterministic rewrite theory by a very simple
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procedure, inwhich equations are oriented as rewrite rules and equational conditions (ordinary ones and so calledmatching

equations) are transformed into rewrite conditions (see [25] for a detailed algorithm).

The same way that for unconditional specifications, confluence of a set of rewrite rules can be reduced to local conflu-

ence under the termination assumption, to reduce the confluence of strongly deterministic rewrite theories to their local

confluence we similarly need a suitable conditional termination assumption.

Definition 2. A strongly deterministic rewrite theory R = (�, A, R) is quasi-decreasing iff there is a well-founded partial

order� on T�(X ) such that:

(i) it is A-compatible, i.e., if v =A u � u′ =A v′ then v � v′ for all terms u, u′, v, and v′ in T�(X ),
(ii) →R,A ⊆ � and � ⊆ � (where � is the strict subterm relation), and

(iii) for each l → r if
∧

i=1..n ui → vi in R, substitution σ , and each 0 ≤ i < n, if ujσ →∗
R,A wj and wj =A vjσ , for

1 ≤ j ≤ i, then lσ � uj+1σ .

Note that, as shown in detail in [44] for the case ofR = (�,∅, R) unsorted (but the argument easily extends to the order-

sorted and modulo cases), quasi-decreasingness is equivalent to operational termination, which is the property checked by

Maude’s MTT tool [19] to prove the termination of an order-sorted conditional rewrite theory R = (�, A, R).

3.2. The descent property and Church-Rosser specifications

For an order-sorted specification R = (�, A, R) it is not enough to be confluent: if the canonical form t↓R of a term t

exists, then it should provide the most complete information possible about the sort of the equivalence class [t]R∪A. These

intuitions are captured by the notions of descent and of Church-Rosser specification.

Definition 3. LetR = (�, A, R) be strongly deterministic and weakly terminating modulo A. We say thatR has the descent

property (resp., ground descent property) iff for each term (resp., ground term) t there exists a term t′ such that t →!
R,A t′

and ls(t) ≥ ls(t′).

Definition 4. LetR = (�, A, R) be strongly deterministic and either: (i) is sort-decreasing, or (ii) has the descent property.

If, in addition, R is confluent modulo A (resp., ground confluent modulo A), then we call R Church-Rosser (resp., ground

Church-Rosser) modulo A.

Note that in a Church-Rosser specification R, for each term t, if there is a term t↓R such that t →!
R,A t↓R, then such

a t↓R is unique up to A-equality and ls(t)A ≥ ls(t↓R). Note also that the Church-Rosser notion as defined above is more

general and flexible than the requirement of confluence and sort-decreasingness [32,40]. The issue is how to find simple

sufficient conditions for descent (under some termination assumption modulo A) that, in addition to the computation of

critical pairs, will ensure the Church-Rosser property. This leads us into the topic of specializations.

Given an order-sorted signature (�, S,≤), a sorted set of variables X can be viewed as a pair (X̂, μ) where X̂ is a set of

variable names and μ is a sort assignment μ : X̂ → S. Thus, a sort assignment μ for X is a function mapping the names of

the variables in X̂ to their sorts. The ordering≤ on S is extended to sort assignments by

μ ≤ μ′ ⇔ ∀x ∈ X̂, μ(x) ≤ μ′(x)

We then say that such a μ is a specialization of μ′, via the substitution

ρ : (x : μ(x)) ← (x : μ′(x))

called a specialization of X = (X̂, μ′) into ρ(X) = (X̂, μ). Note that if the set of sorts is finite, or if each sort has only a finite

number of subsorts below it, then a finite sorted set of variables has a finite number of specializations.

The notion of specialization can be extended to axioms and rewrite rules. A specialization of an equation (∀X, l = r if C)
(resp., a rule (∀X, l → r if C)) is another equation (∀ρ(X), lρ = rρ if Cρ) (resp., another rule (∀ρ(X), lρ → rρ if Cρ))
where ρ is a specialization of X . It is easy to check that an equation (∀X, l = r if C) (resp., a rule (∀X, l → r if C)) is
sort-decreasing in the sense explained in Section 2 iff ls(lρ) ≥ ls(rρ) for each specialization ρ . Obviously, if in a weakly

terminating R = (�, A, R) all rules in R are sort-decreasing when viewed as unconditional rules, then R has the descent

property. Butwearenot requiring sort decreasingness:we seek some sufficient conditions to ensuredescent under thequasi-

decreasingness assumption. Such conditions are called membership assertions. We let R � t →R,A u and R � t →∗
R,A u

respectively denote a one-step rewrite proof and an arbitrary length (but finite) rewrite proof in R from t to u, using the

deduction rules in [9].

Definition 5. LetR = (�, A, R) be a quasi-decreasing order-sorted specification satisfying the assumptions in Section 3.1.

Then, the set of (conditional) membership assertions for a conditional rule t → t′ if C is defined as
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{ t′θ : ls(tθ) if C θ | θ is a specialization of Var(t)

and �u s.t. t′θ →!
R,A u ∧ ls(u) ≤ ls(tθ) }

By definition, we say that R satisfies (resp., inductively satisfies) a conditional membership assertion of the form w : s if D
iff for each solution τ of D (resp., each ground solution τ of D) there is a term q such that wτ →∗

R,A q and ls(q) ≤ s,

where if D = ∧
j uj → vj , then a substitution (resp., ground substitution) τ is a solution (resp., ground solution) of D iff

R � ∧
j ujτ →∗

R,A vjτ .

A membership assertion t : s if C is more general than another membership assertion t′ : s if C′ if there exists a substitu-

tion σ such that tσ =A t′, and C σ =A C′. We denote MMA(R) the set of most general membership assertions of all of the

equations in the specificationR. It is easy to show thatR satisfies all its membership assertions iff it satisfies MMA(R). The
importance of MMA(R) as a set of sufficient conditions whose satisfaction ensures the descent property is explained by the

following theorem.

Theorem 1. LetR = (�, A, R) be as in Definition 5. ThenR has the descent (resp., ground descent) property if it satisfies (resp.,

inductively satisfies) all the conditional membership assertions in MMA(R).

Proof. We prove the non-ground case; the proof of the ground case is similar. For simplicity we work with the set of

all membership assertions of R rather than with the semantically equivalent set MMA(R). By the quasi-decreasingness

assumption, the relation →+
R,A is a well founded (strict) order. The proof is by well-founded induction on →+

R,A. If t is

R, A-irreducible the result is obvious. Suppose instead that we have a term v such that t →R,A v. This means that there

is a rule l → r if C in R, a position p, and a substitution σ that solves C, such that t|p =A lσ , and v = t[rσ ]p. Let ρ
be the specialization of Var(l) such that for each x ∈ Var(l) the sort of x is now ls(xσ). Then s = ls(lρ) = ls(lσ), and
we have a substitution τ with domain ρ(Var(l)) such that τ = σρ . Suppose that the rule l → r if C had generated the

membership assertion rρ : s if Cρ . SinceR satisfies all itsmembership assertions and τ solvesCρ ,wehave a termw such that

rρτ = rσ →∗
R,A w and s ≥ ls(w). But then, t[rσ ]p →∗

R,A t[w]p, and, by A sort-preserving, ls(t) = ls(t[lσ ]p) ≥ ls(t[w]p).
But since t →+

R,A t[w]p, applying the induction hypothesis to t[w]p we get a t′ with t →!
R,A t′ and ls(t) ≥ ls(t[w]p) ≥ ls(t′),

as desired. �

Example 1. Given a specification of natural numbers and integers with the usual operations and including a square
operation defined by:
op square : Int -> Nat .
eq square(I:Int) = I:Int * I:Int .

this equation gives rise to a membership assertion, because the least sort of the term square(I:Int) is Nat, but it is Int
for the term in the righthand side. The proof obligation generated by the CRC tool is

mb I:Int * I:Int : Nat .

This membership assertion must be proven inductively. That is, we have to treat it as the proof obligation that has to be

satisfied in order to be able to assert that the specification satisfies the ground descent property. In this case, we have to

prove thatwe have INT �ind (∀I)(∃J) I * I →∗ J, for I and J variables of sorts Int and Nat, respectively, andwhere

INT here denotes the rewrite theory obtained from the original equational theory by turning each equation into a rewrite

rule. This can be done using the constructor-based methods for proofs of ground reachability described in [54,55].

3.3. Conditional critical pairs and confluence

We say that a term t A-overlaps another term t′ with distinct variables if there is a nonvariable subterm t′|p of t′ for some

position p ∈ P(t′) such that the terms t and t′|p can be A-unified.

Definition 6. Given an order-sorted equational specification R = (�, A, R) satisfying the assumptions in Section 3.1,

and given (possibly renamed) conditional rewrite rules l → r if C and l′ → r′ if C′ in R such that Var(l → r if C)
∩ Var(l′ → r′ if C′) = ∅ and l|pσ =A l′σ , for some nonvariable position p ∈ P(l) and A-unifier σ ∈ UnifA(lp, l

′),
then the triple

C σ ∧ C′σ ⇒ (l[r′]p)σ = rσ

is called a (conditional) critical pair.

Note that the critical pairs accumulate the substitution instances of the conditions in the two rules, as in [8]. Given a

rewrite theory R = (�, A, R), a critical pair C ⇒ u = v is more general than another critical pair C′ ⇒ u′ = v′ if there
exists a substitution σ such that uσ =A u′, vσ =A v′, and C σ =A C′, where C σ =A C′, with C = ∧

i=1..n ui → vi and

C′ = ∧
i=1..m u′i → v′i , iff n = m and uiσ =A u′i and viσ =A v′i for each i ∈ [1..n].
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Given a specification R, let MCP(R) denote the set of most general critical pairs between rules in R, and let MCP(R)↓
denote the set of critical pairs obtained after simplifying both sides of each critical pair using the equational rules in R,

and discarding trivially joinable critical pairs modulo A of the form C ⇒ t = t. As we explain in Corollary 1 below, if R is

quasi-decreasing, satisfies the descent property, andMCP(R)↓ = ∅,R is confluentmodulo its axioms A. However, even ifR
is confluent, MCP(R)↓may be nonempty. The reason for this is that what a conditional critical pair C ⇒ s = t requires to

be shown, is not the trivial joinability s↓R,A t, that is, the existence of termsw =A w′ such thatR � s →∗
R,A w ∧ t →∗

R,A w′,
but only the joinability sτ ↓R,A tτ for each solution τ of C. That is, all critical pairs C ⇒ s = t in MCP(R) may be joinable in

the sense below, but this may not be settled just by checking s↓R,A t.

Definition 7. We say that a conditional critical pair C ⇒ s = t is trivially joinable iff s↓R,A t, and that it is joinable (resp.,

ground joinable) iff for each solution (resp., ground solution) τ of its condition C, we have sτ ↓R,A tτ .

The theorem below reduces confluence to local confluence of conditional critical pairs. It generalizes to the order-sorted,

modulo, and ground cases, and to the weaker termination condition of quasi-decreasingness (instead of the stronger quasi-

reductiveness condition in [2]) a similar theorem by Avenhaus and Loría-Sáenz [2].

Theorem 2. Let R = (�, A, R) satisfy the assumptions in Section 3.1, be quasi-decreasing with respect to an A-compatible

well-founded order�, and satisfy (resp., inductively satisfy)MMA(R).R is confluent (resp., ground confluent) iff all critical pairs

in MCP(R) are joinable (resp., ground joinable).

Proof. The (⇒) implication is trivial, so we focus on proving the (⇐) implication. We prove (⇐) in the general case by

well-founded induction on �. We then explain how the proof can be specialized for the ground confluence case. Without

loss of generality we may prove the results for terms t, t′, and t′′ such that there exist t1 and t2 with

t′ t1
∗
R,A
		 t

R,A
		

R,A
�� t2

∗
R,A

�� t′′

Since by quasi-decreasingness u →R,A v implies u � v, by the usual well-founded induction argument, it is enough to

prove that t1↓R,A t2.We reason by cases depending on the positions p, q atwhich the one-step rewrites t
p→R,A t1, t

q→R,A t2
take place. The case when p and q are disjoint positions, that is, p �≤ q and q �≤ p, is easy, as shown in Fig. 1.

Let us now suppose the case p ≤ q (the case q ≤ p is completely symmetric). Since w � w′ implies w � w′, by well-

founded induction we may reduce to the case where p = � (top position). Therefore, we have rules l → r if
∧

i ui → vi
and l′ → r′ if ∧

j u
′
j → v′j in R such that

t
A

�

q

R,A 



Lemma 1

l

θ

������������� ��
��

��
��

��
��

�

R

� ��

q′
R,A



r

θ

t1
������������� ��

��
��

��
��

��
�

t2
A

�
q′

r′
θ ′

t′2
������������� ��

��
��

��
��

��
�

�������� ��
��

��
��

And we can consider two cases:

(a) (non-overlap case) q′ is not a non-variable position of l and

(b) (overlap case) q′ is a non-variable position of l.

Let us first show the non-overlap case (a), summarized in Fig. 2, where q′ occurs at the position of a variable x of l, or below

such a position. Let q′′ ≤ q′ be the position of the occurrence of x below which q is located. Then, the rewrite l′θ ′ →R,A r′θ ′
induces also a rewrite xθ →R,A v so that t′2 = t′[v]q′′ . Let τ be the substitution such that xτ = v, and yτ = yθ otherwise.

Since we do not assume sort-decreasingness, if x originally had sort s, it may be the case that ls(v) �≤ s. But we can always

re-type xwith, say, the top sort [s] to get a well-typed τ . We then have t′2 →∗
R,A lτ . But sinceR satisfies MMA(R), reasoning

exactly as in the proof of Theorem 1we obtain an R, A-normalized substitution τ ′ such that τ →!
R,A τ ′ with ls(yθ) ≥ ls(yτ ′)

for each y ∈ dom(θ). So we can re-assign the original sort s to the variable x, so that τ ′ has the same domain as θ . Therefore,

since θ →!
R,A τ ′, we have t1 = rθ →∗

R,A rτ ′; and we also have t′2 →∗
R,A lτ →!

R,A lτ ′. Therefore, we will be done if we show
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Fig. 1. p and q disjoint positions case in Proof of Theorem 2.

that
∧

i∈[1...n] uiτ ′ →∗
R,A w′

i , with w′
i =A viτ

′. But by quasi-decreasingness we have lθ � uiθ , 1 ≤ i ≤ n, and therefore

t =A lθ � uiθ , 1 ≤ i ≤ n. Therefore, since by � A-compatible we have t � uiθ , i ≤ i ≤ n, we can apply the confluence

induction hypothesis to the uiθ , 1 ≤ i ≤ n. But this means that, since by lθ →R,A rθ thanks to
∧

i∈[1...n] uiθ →∗
R,A wi with

wi =A viθ , and since vi is strongly irreducible and τ ′ is a normalized substitution we have

uiθ

R,A

∗��						

R,A

∗��







uiτ

R,A ∗


wi

R,A !



A

Lemma 1

viθ

R,A !


uiτ

′

R,A
��
w′′

i A
w′

i A
viτ

′

and therefore t1↓R,A t2, as desired.

Let us prove case (b). We have t′2 = (l[r′]q′)(θ ∪ θ ′) and t1 = rθ = r(θ ∪ θ ′), and there is a conditional critical pair

C ⇒ (l[r′]q′)α = rα and a substitution β such that θ ∪ θ ′ =A αβ , and furthermore, θ ∪ θ ′ is a solution of C. Therefore, by

Lemma 1, αβ is also a solution of C and we have (l[r′]q)αβ ↓R,A rαβ . This then gives us t1↓R,A t2, as shown in the diagram

in Fig. 3.

Let us finally see how the above proof specializes to a proof of ground confluence when t, t1, and t2 are ground terms,

and all critical pairs are ground joinable. Because of the assumption that R = (�, A, R) is deterministic and the axioms A

are regular and linear (so that t =A t′ implies Var(t) = Var(t′)), the substitutions θ and θ ′ allowing the rewrites t →R,A t1
and t →R,A t2 are ground substitutions. We again reason by cases. The case of disjoint positions is again unproblematic.

For case (a), we reason exactly as before to obtain an R, A-irreducible ground substitution τ ′ such that θ →!
R,A τ ′. Then the

ground confluence induction hypothesis allows us to show that
∧

i∈[1...n] uiτ ′ → w′
i , with w′

i =A viτ
′, which then gives us



F. Durán, J. Meseguer / Journal of Logic and Algebraic Programming 81 (2012) 816–850 825

Fig. 2. p ≤ q, non-overlap case in Proof of Theorem 2.

t1↓R,A t2, as desired. In case (b), since both θ and θ ′ are ground, and θ ∪ θ ′ =A αβ , αβ is also ground, and we can use the

ground confluence assumption to get again t1↓R,A t2, as desired. �

Corollary 1. Let R = (�, A, R) be as in Theorem 2, and suppose that all critical pairs C ⇒ s = t in MCP(R) are trivially

joinable. Then R is confluent.

Proof. This follows from the fact that the rewriting relation →R,A is closed under substitution, i.e., if t →R,A t′, and σ is

a substitution, then tσ →R,A t′σ . Therefore, if s ↓R,A t, then, a fortiori, sσ ↓R,A tσ for any solution σ of the critical pair’s

condition C. �

Obviously, Corollary 1 guarantees that MCP(R)↓ = ∅ is a sufficient condition for R’s confluence. But we may have

MCP(R)↓ �= ∅ and yet all its critical pairs may be joinable, or at least ground joinable. Therefore, in the conditional case it

becomes very important to use methods that can prove joinability (resp., ground joinability) of conditional critical pairs.

3.4. Context-joinable and unfeasible conditional critical pairs

We extend to the order-sorted and modulo cases two very useful methods of proving that a conditional critical pair

C ⇒ s = t is joinable studied by Avenhaus and Loría-Sáenz [2]. The first method consists of identifying critical pairs

C ⇒ s = t that are context joinable, that is, joinable if we assume the condition C as a set of additional (ground) rewrite

rules to join s and t. In the second method, a conditional critical pair C ⇒ s = t is shown joinable by showing that its

condition C has no solutions whatsoever, and then C ⇒ s = t is called unfeasible. The CRC tool examines all the critical

pairs in MCP(R)↓ trying to prove each of them either context-joinable or unfeasible. In this way, many conditional critical

pairs can be discarded in practice, and in some cases no critical pairs remain.
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Fig. 3. p ≤ q, overlap case in Proof of Theorem 2.

Let a context C = {u1 → v1, . . . , un → vn} be a set of oriented equations. We denote by C the result of replacing

each variable x in C by a new constant x. And given a term t, let the term t be the term obtained by replacing each variable

x ∈ Var(C) by the new constant x.

Definition 8. Let R = (�, A, R) be as in Theorem 2, and let C ⇒ s = t be a critical pair resulting from li → ri if Ci for

i = 1, 2, and σ ∈ UnifA(l1|p, l2). We call the condition C of a critical pair C ⇒ s = t unfeasible if there is some u → v

in C such that u →∗
R∪C,A

w1, u →∗
R∪C,A

w2, UnifA(w1,w2) = ∅, and w1 and w2 are strongly irreducible with R modulo A;

likewise, a critical pair C ⇒ s = t is called unfeasible iff C is unfeasible. We call C ⇒ s = t context-joinable if s↓R∪C t.

Theorem 3. LetR = (�, A, R) be as in Theorem 2. If every critical pair C ⇒ s = t ofR is either unfeasible or context-joinable,

then R is confluent.

Proof. We prove the result by well-founded induction on �. Suppose that we have the critical peak u
∗← t

∗→ v. All

nontrivial cases to consider are of the form u
∗← u0 ← t → v0

∗→ v and such that the redexes for u0 and v0 overlap. If they

do not overlap at the top of t for one of them, then the induction hypothesis can be applied, since there will be a smaller

subterm for which we have the result.

Also, since t � u0 and t � v0, the confluence for u, v will follow from that for u0, v0:

t



������
��������

u0

∗

������

ind. hyp. ∗ ��

v0

∗��







ind. hyp.∗

u

∗ �� ∗�� ind. hyp. ∗ ��

v

∗��

∗ �� ∗��

Therefore, we may reduce to an instance of a critical pair C ⇒ s = t by a substitution α such that αC holds. Now, if

C ⇒ s = t is context-joinable, the result follows (with minor adaptations) from [2, Lemma 4.2].

So we have only left the case when C ⇒ s = t is unfeasible and αC holds. This means that ασC1 and ασC2 hold for

the conditions of the rules l1 → r1 if C1 and l2 → r2 if C2 which, with unifier σ , gave as the critical pair C ⇒ s = t with

condition C = σC1 ∧ σC2. Therefore, since→R,A ⊆ �, and for each ui → vi in C1, u
′
j → v′j in C2 we have ασui →∗

R,A ασ vi
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and ασu′j →∗
R,A ασ v′j , we have that for each u → v in C we have αu →∗

R,A αv, and therefore, by quasi-decreasingness of R,

we have ασui≺ ασ l1 � ασ l2 � ασu′j .
Since C ⇒ s = t is unfeasible, there is a condition u → v in C such that u →∗

R∪C,A
w1 and u →∗

R∪C,A
w2 with

UnifA(w1,w2) = ∅ and w1 and w2 strongly irreducible. Note that, u → v is either: (i) a condition σui → σ vi with

ui → vi in C1; or (ii) a condition σu′j → σ v′j with u′j → v′j in C2. Let us consider case (i). By [2, Lemma 4.2], we then

have ασui →∗
R,A αw1 →∗

R,A α↓(w1) and ασui →∗
R,A αw2 →∗

R,A α↓ (w2), where α↓ is just some canonical form of

the substitution α, which exists by the termination assumption regardless of whether R is confluent modulo A or not.

But since w1, w2 are strongly irreducible, α↓ (w1) and α↓ (w2) are in canonical form (modulo A) and are different (by

UnifA(w1,w2) = ∅). But since ασ l1 � ασui, the confluence induction hypothesis applies to ασui, and therefore it is

confluent, which is in contradiction with α↓(w1) �=A α↓(w2).
Case (ii), where the unfeasibility problem arises in ασu′j is entirely similar, since ασ l1 � ασ l2 � ασu′j . �

Once all critical pairs in MCP(R)↓ are computed, based on this result, the CRC tool proceeds as follows. It first checks

whether each conditional critical pair C ⇒ s = t is context joinable:

(i) Variables in C ⇒ s = t are added as new constants X .

(ii) New ground rewrite rules C plus an equality operator eqwith rules eq(x, x) → tt are added to the rules R. Call this

theory R̂C .

(iii) In R̂C , we search eq(s, t) →+ tt up to some predetermined depth (using Maude’s search command).

If the search is successful, then the conditional critical pair is context joinable. Otherwise, we then checkwhether C ⇒ s = t

is unfeasible as follows: For each condition ui → vi, we perform in R̂C the search ui →! x : [s], where [s] is a top sort added

to the connected component of the sort s of ui. Letw1 . . .wm be the terms thus obtained. Ifm = 1, then we can discard this

term ui and look for the next condition ui+1 → vi+1. Otherwise, we try to find two different terms wj , wk such that

(a) UnifA(wj,wk) = ∅ and

(b) wj and wk are strongly irreducible withRmodulo A.

If we succeed in finding a condition ui → vi for which associated wj , wk satisfy (a) and (b), then the conditional critical

pair C ⇒ s = t is unfeasible.

This procedure can be improved as follows:

(A) Before doing this, we can first try to find two conditions ui → vi, uj → vj in C such that ui =A uj , and then try

to get all the canonical forms of ui using R̂C as before. This will make the process faster in some cases, since one

focuses on likely candidates first.

(B) Suppose we have found canonical forms wi, wj for u associated to a condition u → v such that wi and wj have

no A-unifiers, but either wi or wj fail to be strongly R-irreducible. Let p1 . . . pn (resp., q1 . . . qm) be the highest

nonvariable positions in wi (resp., wj) such that there is an overlap with a rule in R (and none of the pl , qr are root

positions). Then abstract wi and wj to w̃i = wi[x1]p1 . . . [xn]pn (with xl a fresh new variable of the sort of wi|pl )
and w̃j = wj[y1]q1 . . . [ym]qm (with yr a fresh new variable of the sort of wj|qr ), respectively. Note that w̃i and w̃j

are strongly R-irreducible by construction. Then if Unif(w̃1, w̃2) = ∅, we can still conclude that the critical pair is

unfeasible.

Proof (of (B)). Let σ be a substitution satisfying the condition C of the critical pair, and let X be the set of variables

in C. Then we have

σ(u)

∗��											

∗��











σ(wi) = τ(w̃i)

∗ 



σ(wj) = τ(w̃j)

∗


τ ↓(w̃i) τ ↓(w̃j)

where τ ↓ is the normalized substitution for the substitution τ defined below. Therefore, τ ↓(w̃i) and τ ↓(w̃j) are
in canonical form, and since w̃i and w̃j have no A-unifiers we have τ ↓(w̃i) �=A τ ↓(w̃j).
In more detail, the substitution τ is defined as follows:

τ : X ∪ {x1, . . . , xn, y1, . . . , ym} −→ T�(X)
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with x1, . . . , xn, y1, . . . , ym fresh new variables, and where

(a) ∀x ∈ X, τ (x) = σ(x),
(b) τ(xl) = σ(wi)pl , and
(c) τ(yr) = σ(wj)qr . �

These two optimizations are not currently available in the CRC tool.

3.5. The proof obligations returned by the Church-Rosser Check

Given an order-sorted equational specification R, the CRC tool returns a pair 〈 MCP(R)•, MMA(R) 〉, were MCP(R)•
denotes the subset of critical pairs in MCP(R)↓ that could not be proved either context-joinable or unfeasible. As discussed

above, a fundamental result underlying our tool is that the absence of critical pairs and of membership assertions in such an

output is a sufficient condition for a quasi-decreasing specification R to be Church-Rosser. In fact, for terminating uncondi-

tional specifications this check is a necessary and sufficient condition; however, for conditional specifications, the check is

only a sufficient condition, because if the specification has conditional equations we can still have unsatisfiable conditions

in the critical pairs or in the membership assertions; that is, we can have 〈 MCP(R)•, MMA(R) 〉 �= 〈 ∅,∅ 〉 with R still

Church-Rosser. Furthermore, even if we assume that the specification is unconditional, since for specificationswith an initial

algebra semanticswe only need to check thatR is ground-Church-Rosser, wemay sometimes have specifications that satisfy

this property, but forwhich the tool returns a nonempty set of critical pairs or ofmembership assertions as proof obligations.

Of course, in other cases it may in fact be a matter of some error in the user’s specification that the tool uncovers. In any

case, the user has complete control on how to modify his/her specification, using the proof obligations in the output of the

CRC tool as a guide. In fact, as we explain in Section 5, several possibilities exist.

4. Coherence of conditional rewrite theories

We assume an order-sorted rewrite theory of the formR = (�, E ∪ A, R, φ), where:

(1) φ is a frozenness map (see [9]) of the form φ : � −→ P(N), which assigns to each operator f : k1 . . . kn → k in

� the subset φ(f ) ⊆ {1, . . . , n} of its frozen arguments, that is, those argument positions under which rewriting

with R is forbidden in the rewrite theoryR = (�, E ∪ A, R, φ).
(2) (�, E ∪ A) is an order-sorted conditional equational theory, which can be converted into a strongly deterministic

rewrite theory (�, A, E) which is Church-Rosser (resp., ground Church-Rosser). Furthermore, the regular, linear,

and sort-preserving axioms A are unconditional equations at the kind level, i.e., each connected component in the

poset (S,≤) of sorts has a top sort, and the variables in the axioms A all have such top sorts.

(3) R is a collection of A-coherent rewrite rules l → r if C, where C is an equational condition, which again can be turned

into a deterministic rewrite rule of the form3 l → r if u1 →E v1 ∧ · · · ∧ un →E vn with the v1, . . . , vn strongly

E, A-irreducible.

The followingdefinition of coherence, due toViry [59], intuitively states that a rewrite stepwithR can always be postponed

until after performing more equational reduction with E, without compromising E ∪ A-equality of states. Note that the

condition is stronger than the so-called weak coherence property [47,59], where after reduction with E we would perform

u′ →∗
R,A u′′. Weak coherence is less satisfactory in some respects. For example, we could not rely anymore on representing

states of R as E, A-canonical forms to model check an LTL formula©ϕ using such states.

Definition 9. A rewrite theory R = (�, E ∪ A, R, φ) satisfying (1)–(3) above is called coherent (resp., ground coherent) iff

for each �-term t (resp., ground �-term t) such that t →E,A u and t →R,A v we have

t
R,A

��
E,A 



v

∗
E,A��

u

∗E,A 



w

A

w′

u′ R,A
�� u′′

∗
E,A

��
(C)

R = (�, E ∪ A, R, φ) satisfying (1)–(3) above and with (�, A, E) quasi-decreasing is called locally coherent (resp., locally

ground coherent) iff for each �-term t (resp., ground �-term t) such that t →E,A u, and t →R,A v we have

3 Note that this rule involves two different rewrite relations: R defines a relation →R,A , and E defines a relation →E,A . But in rewriting logic (see [9,20]), the

definition of→R,A uses the auxiliary relation→E,A to evaluate conditions of rules in R (see [20]). Tomark this difference, the rewrites in the equational condition

of a rule in R are denoted ui →E vi .
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t
R,A

��
E,A 



v

∗
E,A��

u

!E,A 



w

A

w′

u′ R,A
�� u′′

∗
E,A

��
(LC)

where s →!
E,A t iff s →∗

E,A t and t is E, A-irreducible.

Theorem 4. Let R = (�, E ∪ A, R, φ) satisfy (1)–(3), with (�, A, E) quasi-decreasing. Then, R is coherent (resp., ground

coherent) iff R is locally coherent (resp., locally ground coherent).

Proof. Obviously (LC) ⇒ (C). Let us prove that (C) ⇒ (LC) by well-founded induction on the terminating relation→E,A.

Let t be any term. If t = t↓E,A or t = t↓R,A both (C) and (LC) hold trivially. Therefore, we may assume that t →E,A u

and t →R,A v. By coherence we then have:

t
R,A

��

E,A 



v

∗ E,A��
u

∗ E,A



w1

A

w′
1

t1
R,A

�� v1

∗
E,A

��

If t1 = t1↓E,A we are done, so wemay assume that we have t1 →E,A u1 →∗
E,A u′1↓E,A. By noetherian induction on→E,A,

t1 is (LC) and therefore we have:

t
R,A

��

E,A 



v

∗ E,A��
u

∗ E,A



w1

A

E,A

! �� w
A

w′
1 E,A

! ��
Lemma 1

w′

At1
R,A

��

E,A 



v1

∗
E,A

��

∗
E,A

��

confluence of→E,A

u1

! E,A



w2

A

E,A

! ��

Lemma 1

w′′
A

w′
2 E,A

! �� w′′′

u′ R,A
�� u′′

∗
E,A

��

�

Since for R = (�, E ∪ A, R, φ) satisfying (1)–(3), with (�, A, E) quasi-decreasing, for all terms t, t is coherent iff t is

locally coherent, we can approach the verification of coherence for such a theory R as follows: We can reason by cases on

the situations
t

E,A ���� R,A���
�

u v
depending on whether they are or not overlap situations. For this we need the notion of a

conditional critical pair, and the notion of conditional critical pair joinability.

Definition 10. Given conditional rewrite rules with disjoint variables l → r if C in R and l′ → r′ if C′ in E, their set of

conditional critical pairsmodulo A is defined as usual: eitherwe find a non-variable position p in l such thatα ∈ UnifA(l|p, l′)
and then we form the conditional critical pair
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α(C) ∧ α(C′) ⇒ α(l[l′]p)

E 



A
α(l)

R
�� α(r)

α(l[r′]p)
(I)

or we have a non-variable and non-frozen position p′ in l′ such that α ∈ UnifA(l
′|p′ , l) and we form the conditional critical

pair:

α(C) ∧ α(C′) ⇒ α(l′)

E 



A
α(l′[l]p′) R

�� α(l′[r]p′)

α(r′)

(II)

We typically write these critical pairs as α(C) ∧ α(C′) ⇒ α(l[r′]p) → α(r) and α(C) ∧ α(C′) ⇒ α(r′) → α(l′[r]p′).
Note the use of → instead of = to distinguish these critical pairs from those introduced in Section 3, were only one

rewrite relation was used.

We say that a critical pair of type (I) is joinable iff for any substitution τ such that E ∪ A � τα(C) ∧ τα(C′) we then

have4

τ(α(l))
R,A

��

E,A 



A �������
������� τ(α(r))

∗
E,A

��
τ(α(l[l′]p))

E,A 



w

A

u
A

∗E,A 



τ(α(l[r′]p))
∗E,A 



w′
A

u′′′ R,A
��
uiv

A

∗
E,A ��

w′′

u′
A

������������

������������
R,A

�� u′′

∗
E,A

��

Of course, by (C) ⇔ (LC) it is enough to make this check with u′′′ = u′′′ ↓E,A.

Similarly, we say that a critical pair of type (II) is joinable iff for any substitution τ such that E ∪ A � τα(C)∧ τα(C′) we

then have

τ(α(l′))
R,A

��

E,A 



A �������
������� v

A ∗
E,A

��
τ(α(l′[l]p)) R,A

�� τ(α(l′[r]p))
∗

E,A
��

w

A

τ(α(r′))

∗E,A 



w′
A

w′′

u′ R,A
�� u′′

∗
E,A

��

where, again, by (C) ⇔ (LC) it is enough to perform the check with u′ = u′ ↓E,A.

Of course, joinability of all conditional critical pairs of R and E is a necessary condition for coherence. The challenge now

is to find a set of sufficient conditions for coherence that includes the joinability of conditional critical pairs.

Specifically, non-overlapping situations between equations and rules require additional conditions. In the case of co-

herence checking, we need to worry, not only about overlapping situations as for the case of confluence, but also about

4 Note that this diagram, and others to come, would be much simplified using the relations→E/A and→R/A . However, actual computation uses the relations

→E,A and→R,A; but thanks to the A-coherence of E and R we can use Lemma 1 to fill in the appropriate quadrilaterals.
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non-overlapping of R under E, that is, for l′ →E r′ if C′ in E and l →R r if C in R we need to worry about non-overlap

situations of the form:

l′
x

l

��������������� ��
��

��
��

��
��

��
�

��������� ��
��

��
��

�

����

���� ��
��

��
��

E
��

R 



r′
��������������� ��

��
��

��
��

��
��

�

This situation can be problematic in two related ways: (1) when l′ →E r′ is unconditional but not linear, or (2) when

l′ →E r′ if C′ is conditional. The problem with case (1) is well-understood since [59]. The problem with case (2) was also

mentioned by Viry in [59]; it has to do with the fact that the satisfiability of the condition C′ in an equation l′ →E r′ if C′
depends on the substitution θ (it may hold or not depending on the given θ ). But since R rewrites the substitution θ , we do

not know if C′ will hold anymore after a one-step rewrite with the rule l →R r if C. Note that we can view cases of unconditional

l → r with l non-linear as special cases of (2), since we can linearize l, and give an explicit equality condition instead. For

example, x + x = x becomes x + y = x if x = y.

Theorem 5. LetR = (�, E ∪ A, R, φ) satisfy (1)–(3), with (�, A, E) quasi-decreasing. Then if:

(i) all conditional critical pairs are joinable and

(ii) for any equation l′ → r′ if C′ in E, for each x ∈ Var(l′) such that x is non-frozen in l′, then either

(a) x is such that x �∈ Var(C′), x is also non-frozen in r′, and x is linear in both l′ and r′, or
(b) the sort s of x is such that no rewriting with→R,A is possible for terms of such sort s,

thenR is coherent.

Proof. Consider
t

q

E,A ����
�� p

R,A���
��

�

u v

. Then if neither p ≤ q, nor q ≤ p (disjoint positions) the coherence property holds for t,

since we have:

t
q p

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

�� A

p

A
q

�� ��
p R,A

��

��

��

q

E,A

��

q p

l

θ

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

�� R

p �� q p

r

θ

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

��

A
q

��

�	

q

E,A

		

q p

l′
θ ′

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

��

E
q



q p

l′
θ ′

r

θ

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

��

E
q



q p

r′
θ ′

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

�� A

p

�� �	
p R,A





q p

r′
θ ′

l

θ

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

�� R

p �� q p

r′
θ ′

r

θ

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
� ������� ��

��
��

��
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Fig. 4. Non-overlap case in Proof of Theorem 5.

Therefore, the heart of the matter lies in the cases p ≤ q and q ≤ p. Let us first consider the case p ≤ q. Without loss of

generality we may assume p = � (top position). Therefore, for l →R r if C and l′ →E r′ if C′ we have:

t
q

l′
θ ′

��������������� ��
��

��
��

��
��

��
�

�������� ��
��
��
�

A

�

q

E,A 



l

θ

��������������� ��
��

��
��

��
��

��
�

R

� ��

q′
E,A



r

θ

��������������� ��
��

��
��

��
��

��
�

u
A

Lemma 1

u′

with E ∪ A � θ(C) and E ∪ A � θ ′(C′).
There are now two possibilities:

(a) (Overlap case) q′ is a non-variable position of l.

(b) (Non-overlap case) q′ is not a non-variable position of l.

Let us first show in Fig. 4 that the non-overlap case is unproblematic. The rule application ‡ is possible because, by the

assumption of E being confluent modulo A, and C being equational, since θ =A θ ′′ so θ ↓E,A =A θ ′′ ↓E,A, and therefore, since

θ ′′ =E∪A θ ′′′, E ∪ A � θ(C) implies E ∪ A � θ ′′′(C).
Therefore,we are only leftwith the overlap case, inwhich q is a non-variable position in l. Therefore,we have the situation

in Fig. 5.

Let us now look more carefully at θ and θ ′. Let X = Var(l →R r if C), X′ = Var(l′ →E r′ if C′), X0 = Var(l|p) ⊆ X , and

X′0 = Var(l′) ⊆ X′; and let θ0 = θ |X0 and θ ′0 = θ ′|X′0 . We therefore have a unifier θ0 � θ ′0 (by X and X′ disjoint) such that

(θ0 � θ ′0)(l|p) =A (θ0 � θ ′0)(l′),

and therefore we have α ∈ UnifA(l|p, l′) and τ0 such that τ0 ◦ α =A θ0 � θ ′0.
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Fig. 5. Overlap case, with q a non-variable position in l, in Proof of Theorem 5.

Fig. 6. Overlap case, with q a non-variable position in l, in Proof of Theorem 5.

Let us define τ̂ : (X ∪ X′) − (X0 ∪ X′0) → T�(X ) (with X an infinite set of variables) by

τ̂ (x) =
{
θ(x) if x ∈ X − X0

θ ′(x) if x ∈ X′ − X′0
Then, since α = α|X0∪X′0 , we obviously have that for τ = τ0 � τ̂ the equality

τ ◦ α =A θ � θ ′
holds. Furthermore, since E ∪ A � θ(C) ∧ θ ′(C′) and therefore E ∪ A � θ � θ ′(C) ∧ θ � θ ′(C′), we also have E ∪ A �
τ(α(C)) ∧ τ(α(C′)). And by the joinability assumption we then have the diagram in Fig. 6 as desired.

Therefore, the only remaining case is that of p ≤ q. Again, we can consider two subcases, an overlap subcase, and a

non-overlap subcase. The proof of the overlap subcase is given by the diagram of Fig. 7.

The only case left is the non-overlap case with p ≤ q, where we have the situation depicted in the diagram of Fig. 8.

Note that for this to happen, x must be a non-frozen variable in l′. If x disappears from r′, or appears more than once in

r′, the situation is hopeless (no single rewrite with R possible). Similarly, if x appears more than once in l′, the situation is

likewise hopeless, since the patterns l′ will not match the term θ ′(l′)[θ(r)]p (the other subterms under x will be different!).

Let us prove that condition (ii) is enough. Case (ii).(b) makes the very possibility of a non-overlap case with R below E

impossible, and the diagram in Fig. 9 proves case (ii).(a). Notice that E∪ A � θ(C′) implies E∪ A � θ ′′(C′) because θ =A θ ′
and θ ′′(C′) = θ ′(C′) since x �∈ Var(C′). �

Condition (ii).(b) of Theorem 5 requires a fixpoint calculation. An algorithm that checks that situations where a non-

frozen variable x in a lefthand side of an equation fails to satisfy (ii).(a) or (ii).(b) is provided in [24].
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Fig. 7. p ≤ q, overlap case, in Proof of Theorem 5.

4.1. Context-joinability and unfeasibility of conditional critical pairs

As for the conditional critical pairs of the confluence check (see Section 3.4), from those conditional critical pairs for E

and Rwhich cannot be trivially joined, the ChC tool can currently automatically discard those that are either context-joinable

or unfeasible.

Definition 11. Let R = (�, E ∪ A, R) be an order-sorted conditional rewrite theory satisfying conditions (1)–(3), with E

quasi-decreasing modulo A w.r.t. an A-compatible order �. We call a conditional critical pair C ⇒ s → t unfeasible iff its

condition is unfeasible with respect to (�, A, E) in the sense of Definition 8.

As pointed out in Section 3.4, aMaude order-sorted conditional specification can be converted into an order-sorted deter-

ministic rewrite theory with a simple procedure (see, e.g. [24]). Maude checks that the conditional equational specifications

entered are deterministic (cf. [10]), and we assume it is operationally terminating, and therefore there exists a well-founded

A-compatible order � such that we can use (a simple adaptation of) the results in [2] and their extension to the Maude

case [26], to discard those conditional critical pairs generated that are unfeasible.

Definition 12. Given a rewrite theory R = (�, E ∪ A, R) satisfying conditions (1)–(3) above, a non-joinable conditional

critical pair C ⇒ u → v (coming from a conditional critical pair C ⇒ t
E,A ���� R,A���

�

u v

) is called context-joinable if and only
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Fig. 8. p ≤ q, non-overlap case, in Proof of Theorem 5.

Fig. 9. Case (ii).(a) in the Proof of Theorem 5.

if in the extended rewrite theory RC = (� ∪ X, E ∪ C ∪ A, R) we have:

u

!E∪C,A 



v

∗
E∪C,A��

w

A

w′

u′ R,A
��
u′′

∗
E∪C,A

��
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Lemma 2. If the conditional critical pair C ⇒ u → v is context joinable, then for all substitutions σ such that σC holds we have

σu

∗E,A 



σ v

∗
E,A��

σw
A

σw′

σu′ R,A
�� σu′′

∗
E,A

��

and therefore, the coherence property holds for the conditional critical pair C ⇒ t
E,A ���� R,A���

�

u v
.

Proof. By a simple adaptation of [2, Lemma 4.2], since σC holds, we have σu →∗
E,A σu′, σ v →∗

E,A σw, and σu′′ →∗
E,A σw.

But we also have u′ →1
R,A u′′, where u′ is in E ∪ C-canonical form. This means that if we applied l → r if D in R to u′ with

substitution α and D = u1 →E v1 ∧ · · · ∧ un →E vn then αu1 →∗
E∪C,A

αv1 ∧ · · · ∧ αun →∗
E∪C,A

αvn holds, which means

that (by [2, Lemma 4.2]), since σC holds we have σαu1 →∗
E,A σαv1 ∧ · · · ∧ σαun →∗

E,A σαvn. Therefore, we have

σu

∗E,A 



σ v

∗
E,A��

σw

A

σw′

σu′ R,A
�� σu′′

∗
E,A

��

as desired. �

In the implementation of the ChC tool, the lefthand sides of the rules in C are simplified to their normal forms before

turning their variables into constants.

4.2. The ground coherence case

Assume that� has a sub-signature of constructors� that has been verified to be sufficiently completewith respect to the

equations E modulo A, that is, that for each ground �-term t there is a ground �-term t′ such that t →∗
E,A t′. Then, we can

view each f ∈ � with a different syntactic form from � as a frozen operator, since any ground term in E,A-canonical form
will not contain the symbol f . This automatically excludes all problematic non-overlaps with R below E except for:

(a) constructor equations and

(b) equations f (t1, . . . , tn) → r if C in E with f ∈ � − �, and (for axioms A which are combinations of associativity

and/or commutativity and/or identity axioms) with f having the identity, left identity, or right identity attributes,

and such that the lefthand side of the equation resulting from the variant-based transformation to remove the

identity attributes has a non-frozen variable (see [21] for details on the variant-based transformation).

Therefore, assuming again that A is a combination of associativity and/or commutativity and/or identity, for ground

coherence under the assumption of frozenness of defined symbols, we only have to check condition (ii) in Theorem 5 on

equations of types (a) and (b) above.

Furthermore, for those conditional critical pairs C ⇒ u → v for which we have not been able to check unfeasibility nor

context joinability, we can guarantee their inductive ground joinability if for w = u↓E,A and for the rewrite theory

R̃C,Y =
⎛⎝� ∪ X ∪ ⋃

λ

Yλ, E ∪ C ∪ A,
{
λ′ : l → rYλ | λ : l → r if D ∈ R

}⎞⎠
where X = Var(C ⇒ u → v), Yλ = Var(r) − Var(l) for a rule λ : l → r if D in R, and rYλ denotes the term r with all

variables in Yλ made constants, we can prove w →1
R,A vi for some substitution θi for the variables of l → r for some such

rule. Then inductive ground joinability amounts to proving the inductive theorem:

E ∪ A �ind C ⇒ (θ1D1 ∧ v1 = v) ∨ · · · ∨ (θnDn ∧ vn = v)

where θi and Di are the matching substitution and the condition of the rule used to reach each vi from w.

The intuition behind this procedure is as follows. Whenwe have a critical pair C ⇒ u → v that we cannot automatically

join, in some cases it is just because the conditions of the appropriate rules cannot be satisfied, or because the term resulting
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from the application of the rule or the term v we want to reach cannot be further simplified. In some other cases it is just

because of the way in which the equations were written, because they are too general or simply because they cannot be

applied to terms with variables as such (more on this in Section 5). However, in the ground case, we can reduce the ground

joinability problem to an inductive equational proof based on the application of the rules whose lefthand sides match the

lefthand side of a particular conditional critical pair. For a critical pair C ⇒ u → v to be rewritten we just need to find a

match θ of w = u↓E,A with the lefthand side of a rule λ′ : l → rYλ (coming from λ : l → r if D) such that its condition is

satisfied (Dθ ) and the term reached is provably equal to v (i.e., v must be proved equal to u[rYλθ ]p for some position p after

restoring the variables in Yλ). Notice that since there might be more than one match with each equation, the conjuncts in

the proof obligation above are indexed by 1..n rather than by the labels of the rules.

5. How to use the tools

This section discusses and illustrates with examples the use of the Church-Rosser and Coherence Checker tools, and

suggests somemethods that—using the feedback provided by the tools—can help the user establish that his/her specification

is ground Church-Rosser and coherent.

We assumea context of use inwhich the user has alreadydeveloped an executable specification of his/her intended system,

and that this specification has already been tested with examples, so that the user is in fact reasonably confident that the

specification is, respectively, ground Church-Rosser or ground coherent, and wants only to check the corresponding property

with the tools. In the case of the CRC it is assumed that the specification has previously been checked to be operationally

terminating, and in the case of the ChC that its equational sub-specification is Church-Rosser (or at least ground Church-

Rosser) and operationally terminating.

The tools can only guarantee success automatically when the user’s specification is unconditional, has sort-decreasing

equations, and is confluent or coherent and, furthermore, any associativity axiom in A for an operator has a corresponding

commutativity axiom. In all other cases, the fact that the tools do not generate any proof obligations is only a sufficient

condition, so that even when they return a collection of proof obligations, the specification may still be ground Church-

Rosser (resp., ground coherent), or for a conditional specification it may even be Church-Rosser (resp., coherent).

An important methodological question is what to do, or not do, with these proof obligations. What should not be done

is to let an automatic completion process add new rules to the user’s specification in a mindless way. In many cases it will

certainly lead to a nonterminating process. For the CRC in some cases this is even impossible in the standard sense, because

some critical pair cannot be oriented. In any case, it will modify the user’s specification in ways that can make it difficult for

the user to recognize the final result, if any, as intuitively equivalent to the original specification.

The feedback of the tools should instead be used as a guide for careful analysis of one’s specification. As many of the

examples we have studied indicate, by analyzing the critical pairs returned, the user can often understand why they could

not be joined. It may be a mistake that must be corrected. More often, however, it is not a matter of a mistake, but of a rule

that is either too general—so that its very generality makes joining an associated critical pair impossible, because no more

equations can apply to it—or amenable to an equivalent formulation that is unproblematic—for example, by reordering the

parentheses for an operator that is ground-associative—or both. In any case, it is the user himself/herself who must study

where the problem comes from, and how to fix it by correcting or modifying the specification. Interaction with the tool then

provides a way of modifying the original specification and ascertaining whether the new version passes the test or is a good

step towards that goal.

If the user’s attempts to correct or modify the specification do not yet achieve a complete success, so that some proof

obligations are left, inductive methods to discharge the remaining proof obligations may be used. In the case of the ChC,

since the user’s specification has an initial model semantics, and the equational sub-specification is assumed to be ground

Church-Rosser and operationally terminating, the proof of the inductive rewritability of the critical pairs can be attempted,

and conditional critical pairs can be discharged if their conditions are proven unsatisfiable.

In the case of the Church-Rosser Checker, since the user’s specification typically has an initial algebra semantics and the

most common property of interest is checking that it is ground Church-Rosser, the proof obligations returned by the tool are

inductive proof obligations. There are essentially two basic lines of approach, which may even be combined:

• The user may conjecture that adding a new equation t = t′ (or set of equations) to its specification T will make it

Church-Rosser. If he/she can prove operational terminationwith the added equation(s) and the CRC does not generate

anyproofobligations for theextendedspecification, all iswell. Theonly remaining issue iswhether thenewequation(s)

have changed themodule’s initial algebra semantics. This can be checked by using a tool such as theMaude ITP (which

does not require an equational specification to be Church-Rosser in order to perform sound inductive proofs) to verify

that T �ind t = t′. A variant of this method when t = t′ is an associativity, or commutativity, or identity axiom, is to

add it to T not as a simplification rule, but as an axiom. Of course, if the new equations added are those returned by

the CRC as proof obligations, the initial algebra semantics is automatically preserved and does not need to be checked,

since the added equations are by construction theorems derivable from the original equations E ∪ A.
• The other alternative is to reason inductively about the ground joinability of the critical pairs, and also about the

inductive satisfaction of themembership assertions, returned by the tool. The key point in both cases is that we should
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reason inductively not with the equational theory T (a critical pair is by construction an equational theorem in T), but

with the rewrite theory
−→
T obtained by orienting the equations of T as rewrite rules. An approach to inductive proofs

for membership assertions with
−→
T has already been sketched in Section 3.2. For proving ground joinability, several

proof methods, e.g. [1,5–7,39,46,53], can be used. In particular, for order-sorted specifications, constructor-based

methods such as those described in [54,55] can be used.

AnunresolvedmethodologicalissueinthecaseoftheCRCiswhattodowithconditionalcriticalpairs,orconditionalmembership

assertions,whoseconditionsareunsatisfiable.Asweexplain inSection3.4,wecurrentlydiscardcriticalpairswhichthetoolcan

showareunfeasibleor context-joinable, butall remainingnot trivially joinablecriticalpairsare returnedto theuser. Sincewedo

not knowwhether the specification is Church-Rosser, we cannot use anymethods that rely in the Church-Rosser assumption

to discard them. Perhaps a modular/hierarchical approach could be used, in conjunction with the inductive proof methods

described above, to establish theunsatisfiability of such conditions todiscard the correspondingproof obligations.

The CRC and ChC tools are both implemented inMaude using reflection as extensions of the Full Maude language [17,23].

They accept as inputs any Maude (or Full Maude) conditional order-sorted equational theories (resp., conditional order-

sorted rewrite theories) satisfying the requirements already mentioned in Sections 3 and 4. However, no use of built-in

operators that rely on the underlaying C++ implementation of Maude is allowed: such operators should be fully specified

by equations. Also, the owise feature5 is not allowed (see [10, Section 4.5.4]).

Wegiveinthefollowingsectionsexamplesillustratingtheuseofthetools.Theexampleshavebeenchosentryingtohighlight

those features not simultaneously supported by other tools, namely, order-sortedness, conditional equations and rules, and

rewritingmodulo axioms. All the examples anddetails of their verification canbe foundat http://maude.lcc.uma.es/CRChC.

5.1. Hereditarily finite sets

The following functional module HF-SETS specifies hereditarily finite sets, that is, sets that are finite and, furthermore,

their elements, the elements of those elements, and so on recursively, are all finite sets. It was developed by Sasse and

Meseguer and is inspired by the generalized sets module in Maude’s prelude [10, Section 9.12.5]. It declares sorts Set and

Magma, withSet a subsort ofMagma. Termsof sortSet are generatedby constructors{}, the empty set, and{_}, whichmakes

a set out of a term of sort Magma. Magmas have an associative-commutative operator _,_. The commutative operator _˜_ is

the set equalitypredicate. Themembership relationholdingbetween twosets is here generalizedbyapredicate_in_holding
between two magmas, and the containment relation⊆ is here modeled by a predicate _<=_ holding between two sets.

Notice the labeling of the equations. The critical pairs returned by the toolwill use the labels to provide information about

the equations they come from. Notice also the importation of the predefined module BOOL-OPS, where the sort Bool is

5 In Maude, the owise attribute can be used to specify otherwise equations, i.e., equations that will be applied only if no other equation for that symbol can

be applied.

http://maude.lcc.uma.es/CRChC
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definedwith constants true and false, and Boolean operations _and_, _or_, _xor_, not_, and _implies_. The operators
_and_, _or_, and _xor_ are declared associative and commutative.

The Church-Rosser check gives the following result:

The tool generates 1027 critical pairs. Most of them are trivially joinable, and therefore discarded. From the remaining

26 critical pairs, all of which are conditional, 20 are discarded because they can be proven to be either context-joinable or

unfeasible. Let us take a look at some of these.

Let us consider the following context-joinable critical pair:

If we extend the module with the condition of this critical pair as an equation with its variables S and S’ turned into

constants, of sort Set, #S and #S’, then, the terms #S in (#S’, #N) and true, with #N a new constant of sort Magma, can
be joined in the extended module.

The following critical pair is discarded because it is unfeasible.

To prove unfeasibility we focus on the conditions. With the rules

the term #S in #S’ can be rewritten both to false and true. Since they do not unify and are strongly irreducible, we

conclude that the critical pair is unfeasible.

Most other critical pairs are discarded for similar reasons. The only ones left are those finally returned by the tool.

These critical pairs are neither context-joinable nor unfeasible. However, we can introduce new equations, that should be

inductively deducible from the specification, or replace the oneswe have by alternative equations, in order to eliminate such

critical pairs.

Let us start with the first critical pair in the CRC output. We may argue that if the set S’ is such that the condition is

satisfied, then the term S’ <= {} should be reducible to true, and try to add equations to allow this rewrite. But, more

easily, we may observe that the critical pair comes from equations 07 and 09 at the top, because 09 is more general than

necessary. Since a set is either of the form {} or {M}, and the {} case is covered by equations 06 and 07, we can eliminate

this critical pair by replacing equation 09with

A new execution of the check shows that the critical pair for equations 07 and 09 is no longer given. The critical pair for

equations 07 and 10 suggests a similar change for equation 10:
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This is not enough, however. With these new two equations, the tool gives us now four conditional critical pairs.

Given these critical pairs, we realize that equations 09’ and 10’ are still problematic. The simplest change is to replace

these two equations by one unconditional equation covering the two cases:

Replacing 09’ and 10’ by 09-10 the check now succeeds:

Therefore, once proven operationally terminating, 6 module HF-SETS-3 is confluent.

5.2. Lists and sets

Let us consider now the following specification of lists and sets.

6 The termination of the HF-SETS-imodules, as the rest of the termination proofs in this article, has been carried out using theMTT tool (see [18,19,21,22] for

details on theMTT tool and on the different techniques and transformations available for checking the termination of membership equational logic and rewriting

logic specifications).
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It has four sorts: MBool, Nat, List, and Set, with Nat included in both List and Set as a subsort. The terms of each sort

are, respectively, Booleans, natural numbers (in Peano notation), lists of natural numbers, and finite sets of natural numbers.

The rewrite rules in this module then define various functions such as _and_ and _or_, a function list2set associating to

each list its corresponding set, the setmembership predicate _in_, and an equality predicate _==_ on lists. Furthermore, the

idempotency of set union is specified by the first equation. The operators_and_ and_or_have been declared associative and

commutative, the list concatenation operator _;_ has been declared associative, the set union operator __ has been declared

associative, commutative and with null as its identity, and the _==_ equality predicate has been declared commutative

using the comm keyword. This module therefore illustrates how the CRC can deal in principle with arbitrary combinations

of associativity and/or commutativity and/or identity axioms, even though it may not succeed in some cases when some

operators are associative but not commutative.

The tool gives us the following result:

These critical pairs are completely harmless. They can in fact be removed by introducing an idempotency equation for

the _or_ operator.

The tool now tells us that the specification is locally confluent and sort-decreasing, and since it is terminating (see [21]),

we can conclude that it is Church-Rosser.

As explained in Section 1, to handle this specification, the CRC applies several semantics-preserving transformations on

the original module to remove identity attributes and associativity attributes that do not come with commutativity ones

and turning them into explicit equations. We refer the interested reader to [25] for details on the use of this transformation

in the CRC, and to [21] for a detailed description of the variant transformation used.

5.3. The bakery protocol

The bakery protocol is a classical solution by Lamport [42] to the problem of achieving mutual exclusion between

processes, as originally stated by Dijkstra [16], and then extended by Knuth in [41]. The algorithm is based on the pro-

cedure commonly used in bakeries and deli shops, in which every customer gets a number when entering the store. Each

client takes as its number the successor of the maximum of the numbers of the clients in the store. The next client to be

served is the one with the smallest number.

In our specification, processes are represented as terms of sort BProcess. The elements of sort BProcess are constructed
by an operator <_,_,_>, which takes the identifier of the process (a natural number of sort MNat), the mode it is currently

in (a constant of sort Mode), and the number it has been assigned (of sort MNat). The state of the bakery is represented as

a term of sort GBState, constructed by an operator [[_]] whose argument is a term of sort BState, which represents a

multiset of processes.

A process can be inmodes sleep,wait or crit. The rules describe howeach process goes frombeing sleeping towaiting,

from waiting to its critical section, and then back to sleeping. When a process is in the sleep mode it has a 0 number; a

process in wait or critmode has a number greater than zero. Auxiliary functions maxNumber and minNzNumber return,

respectively, the maximum and minimum, without considering zeros, of the numbers of the processes in a BState. If the
set of processes passed to the minNzNumber function is either empty or all of them have zero as their number, i.e., are in

the sleepmode, then minNzNumber returns 0.
The following MNATmodule defines the sort MNatwith constructors 0 and s_, a less than predicate _<_, and associative

and commutative operators min and max that return, respectively, the smallest and the greatest of two natural numbers.

Constants representing numbers 1 . . . 5 are also defined. The predefined module TRUTH-VALUE defines a Bool sort with

constants true and false.
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Given the MNATmodule, the following BAKERYmodule specifies the bakery protocol as explained above.

This specification makes use of some of the advanced features supported by the CRC and ChC tools: it is an order-sorted

specification,withaconditional rule, twoassociative-commutativeoperators (minandmax), andanassociative-commutative

operator with identity (__).
Before reducing or rewriting any term, we should make sure that it satisfies the expected executability requirements:

the equational part must be checked terminating and Church-Rosser, and the rules must be coherent with the equations.

The termination of the equational part can be checked using the MTT tool [19].
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The CRC gives the following result:

Since the equational part of the specification is terminating, and the CRC tool certifies that it is locally confluent and sort

decreasing, we can conclude that it is Church-Rosser.

The BAKERYmodule is also ground coherent, as shown by the result returned by the ChC tool:

Let us now verify some properties about this protocol. For instance, let us try to verify mutual exclusion, that is, that two

processes are never simultaneously in their critical sections, and liveness, that is, that whenever a process enters the waiting

mode, it will eventually enter its critical section. To do that we could use the Maude LTL model checker.

However, notice that the range of numbers that can be assigned to customers is unbounded, which creates an infinite

number of reachable states from an initial configuration of processes generated by the initial operator for any value of

its argument greater than 1. Therefore, we should model check these properties using an abstraction. We can for instance

define an equational abstraction [49] by adding to the BAKERYmodule equations defining a quotient of the set of states.

To define an abstraction we can take into account the fact that the process with the smallest number is the one getting

into the critical section, and that we should not change the order in which the assigned numbers are given.We can therefore

safely decrease the numbers of all processes if the smallest of the numbers given is greater than 1. We can do so in the

following module extending the BAKERYmodule by adding a few equations and leaving the rules unchanged:

The intuition behind this abstraction is basically that, if there is no customer with number 1 and some of them have

numbers different from 0, then all the numbers of non-sleeping customers, i.e., with a nonzero number, can be decreased

by 1. The auxiliary dec function decreases (by 1) the number of each of the non-sleeping processes in a given BState. This
abstractionmakes the set of reachable states finite, since the numbers assigned toN processeswill never growbeyondN+1.

As soon as the customer with the smallest number is served, the numbers of all customers are decreased.

We can check the satisfaction of the Church-Rosser property of the equational part of the specification using the CRC tool.

The result given by the tool is the following:
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Since the specification is terminating, we can conclude that it is also confluent. The last requirement is the coherence of

equations and rules. The result of the ChC tool is as follows:

One single critical pair is given by the tool. And, as we asked for a ground coherence check, the associated inductive

equational proof obligation to be discharged is given as part of the output of the tool.

The first key observation to interpret these critical pairs is that TRUTH-VALUE and MNAT are protected in ABSTRACT-
BAKERY. 7 This follows from the confluence, termination, and the sufficient completeness, 8 of the equational part of the

ABSTRACT-BAKERY module, plus the observation that no equations involving either 0 or the s_ function, or true or

false have been added in ABSTRACT-BAKERY. An inductive proof discharging this proof obligation is relatively easy to

do.

In order to specify the desired mutual exclusion and liveness properties, we may specify the state predicates wait(N),
crit(N), and 2crit, which are satisfied, respectively, when process N is in waitmode, when process N is in critmode,

and when there are two processes simultaneously in the critical section:

The SATISFACTIONmodule is a predefined module declaring sorts State and Prop and an operator

that represents the satisfaction of a given proposition in a given state.

The preservation of these state predicates can be guaranteed if we show that the BAKERY-PREDS module protects

TRUTH-VALUE. This follows fromthesufficient completeness, termination, confluenceandsort-decreasingnessof theBAKERY-
PREDSmodule, plus the observation of the absence of any equations having true or false in their lefthand sides.

7 A sort S is protected in an importation of amodule M’ into anothermodule M if no new data items of sort S are added, and no data items of sort S are identified

in M (no junk and no confusion).
8 Note that there is only one conditional equation, the AB equation, which is not required to be considered in the sufficient completeness check because it

operates on constructors. Thus, although the SCC [35] does not support conditional axioms, it can be used, and has in fact been used, to prove the sufficient

completeness of the specification.
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For the checking of the Church-Rosser property the CRC tool can be used.

The correctness of the abstraction requires deadlock freedom. To ensure deadlock freedom, we can use the automatic

module transformation described in [10, Section 15.3], which preserves all the desired executability properties. With this

transformation, we obtain a semantically equivalent, deadlock-free version of our specification.

We can finally verify our desired properties on the specification resulting from the transformation.

We can check mutual exclusion for, e.g., five processes as follows:

And liveness also for five processes with:

5.4. An unordered communication channel

Consider a communication channel in which messages can get out of order. There is a sender and a receiver. The sender

is sending a sequence of data items, for example numbers. The receiver is supposed to get the sequence in the exact same

order in which they were in the sender’s sequence. To achieve this in-order communication in spite of the unordered nature

of the channel, the sender sends each data item in a message together with a sequence number, and the receiver sends back

an ackmessage indicating that has received the item. The Full Maude specification of the protocol is as follows:

The contents of theunordered channel ismodeled as amultiset ofmessages of sortConf. The entire systemstate, involving

the sender, the channel, and the receiver is a 5-tuple of sort State, where the components are:

• a buffer for the sender containing the current list of items to be sent,
• a counter for the sender keeping track of the sequence number for items to be sent,
• the contents of the unordered channel,
• a buffer for the receiver storing the sequence of items already received, and
• a counter for the receiver keeping track of the sequence number for items received.
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One essential property of this protocol is of course that it achieves in-order communication in spite of the unordered

communication medium. We can specify this in-order communication property as an invariant in Maude. We will assume

that all initial states are of the form

That is, the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil and has the counter set to 0, the channel is

empty, and the receiver’s buffer is also empty. Also, the receiver’s counter is initially set to 0.
In specifying the invariant, the auxiliary notion of a list prefix is useful. Given lists L and L′ we say that L is a prefix of L′

iff either: (1) L = L′, or (2) there is a nonempty list L′′ such that L @ L′′ = L′.

Notice that the _˜_ predicate is declared commutative, and the _and_ operator is declared commutative and associative

with identity element tt.
The equational part of the specification can be checked terminating and Church-Rosser using the MTT [19] and the CRC.

And the rules can be shown to be ground coherent with the equations by using the ChC tool.

The problem with this simple example is that one cannot verify the invariant using the search command in Maude,

because, due to the snd rule, the number of messages that can be present in the channel is unbounded, so that there is an

infinite number of reachable states. One should therefore use an equational abstraction [49].

As in the bakery example in Section 5.3, there are of course several key properties that such an abstraction should satisfy:

(1) the set of states reachable from any initial state should be finite,

(2) the equational theory should be ground confluent and terminating,

(3) the rules should be ground coherent with the equations, and

(4) the abstraction should preserve the invariant.
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Properties (1), (2) and (4) can easily be checked. For (3) we can use the ChC.

These critical pairs are in fact not rewritable, and indicate that a rule is missing. We can add the rule:

After checking again properties (1), (2) and (4) above, we can check also the ground coherence of the specification.

6. Related work and conclusions

The results we present on methods for proving confluence of conditional order-sorted equational specifications are part

of a substantial body of work on confluence and/or completion methods for such specifications. Among other references,

methods for unconditional order-sorted specifications were studied in [56], and for the modulo case in [32,60]. Completion

methods for conditional order-sorted specifications were treated in [30] using a reduction to many-sorted specifications

proposed in [33]. Our work extends that previous work and also the work of Avenhaus and Loría-Sáenz [2] on confluence of

conditional unsorted specifications. To the best of our knowledge, Theorem 2 is themost general characterization to date for

the confluence (resp., ground confluence) of conditional order-sorted specifications modulo axioms which are terminating

in a meaningful “operational” way, that is, such that a reduction interpreter will always terminate with a term in normal

form. Therefore, the CRC tool covers a very general class of order-sorted equational specifications. Also related to ourwork on

confluence is previous work on confluence and/or completion of specifications in membership equational logic [8], as well

as the work of Comon in [11,12], which in some sense addresses a middle ground between order-sorted and membership

equational specifications using tree automata techniques.

Since our interest is not only on confluence but also on ground confluence, our work is related to methods for proving

ground confluence and ground joinability, e.g. [6,7,38,39,46,53]. The CRC tool generates proof obligations that can then

be subjected to formal analysis for proving ground joinability of critical pairs. Therefore, the above work can be seen as
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complementary to ours in helping to discharge such inductive proof obligations. In particular, the methods of Bouhoula [7]

can treat order-sorted specifications, and the recent constructor-based inductive methods for ground joinability in [54,55]

can treat order-sorted specifications modulo axioms.

Regardingwork on coherence, there is of course a connectionwith coherencework for equational specifications [4,37,52],

but the most closely related work studies coherence between equations (and possibly axioms) and non-equational rules

describing transitions in a rewrite theory, including [47,58,59]. The work of Marché [45], which studies coherence between

two sets of equational rules, covers amiddle ground between thework onmaking equational specifications coherentmodulo

axioms, and the work on making the rules of a non-equational rewrite theory coherent with its equations and axioms. Our

computation of critical pairs between equations and rules under frozenness constraints has some similarities with the

computation of critical pairs for context-sensitive equational specifications in [43], but the purposes are quite different,

since in [43] the goal is to prove the confluence of context-sensitive equational specifications. All the above-mentionedwork

addresses only unconditional specifications and, except for [47], only in the unsorted case. Furthermore, the most complete

previous work on coherence of rewrite theories, namely [59], covers the modulo case only for AC axioms. To the best of our

knowledge, our work is the first to cover the coherence of conditional order-sorted rewrite theories modulo regular and

linear axioms A, possibly with frozenness constraints. And, as far as we know, the first to study and give proof methods for

the case of ground coherence of such specifications. Ground coherence is in fact the property most needed in practice, for

example when model checking temporal logic properties of a finite-state rewrite theory, or when proving that a finite-state

abstraction of a rewrite theory [29,49,50] is correct for purposes of verifying temporal logic properties of an infinite-state

concurrent system. Fortunately, unlike the case of ground confluence, which is harder to prove than confluence, ground

coherence is in some ways easier to prove than coherence.

Regarding tools for checking the Church-Rosser property of equational specifications, in the unsorted and unconditional

case the most general tool available is probably CiME [13], which supports completion of equational theories modulo a rich

family of equational axioms. To the best of our knowledge, the CRC tool is the first to support the checking of confluence for

operationally terminating specifications in the general case of conditional order-sorted specifications modulo associativity

and/or commutativity and/or identity. Of course, this includes as special cases the checking of many-sorted or unsorted

specifications under such general assumptions. For checking coherence of rewrite theories, the ChC tool seems to be the

only tool currently available.

Future work should proceed in several complementary directions. First of all, since all critical pair computations are

instances of narrowing modulo axioms, new versions of Maude supporting narrowing modulo axioms at the C++ level will

lead to more efficient versions of the CRC and ChC tools. The following cases are currently not supported and should be

investigated: (i) possibly nonterminating conditional order-sorted equational specifications; (ii) rewrite theories whose

equational part is Church-Rosser but may be nonterminating; and (iii) rewrite theories whose rules may contain rewrites in

their conditions. Also, a tighter integration between the CRC, ChC, ITP, SCC, andMTTMaude tools is highly desirable: this will

be supported by the upcomingMaude Formal Environment (MFE) [28]. In particular, support for proofs of ground joinability

in the Maude ITP should be provided, so that proof obligations generated by the CRC tool can be discharged (using MFE to

interoperate both tools); likewise, proof obligations generated by the ChC should be discharged using other tools in theMFE.

Finally, modularity techniques, which can facilitate proofs of confluence or coherence for large specifications, should also

be investigated and supported in future versions of the CRC and ChC tools.
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