
IBOS: A 
correct-by-construction 

modular browser

Ralf Sasse, Samuel T. King, José Meseguer, Shuo 
Tang



Motivation
● Browsers are de-facto OS for webapps
● Increasing functionality leads to technical debt - problem with sensitive data
● Ideally functionality and security are separated into the browser and a 

browser kernel
● Even still, browser must trust underlying OS
● Solution is to include basic OS code in Trusted Computing Base (TCB)

○ Small microkernel which is verified + small browser kernel which is verified
○ L4Ka microkernel not formally verified, but a replaceable part



Background

● Same Origin Policy
○ 7 rules about data transfer that guarantee 

isolation of browser tabs across domains
○ Web apps from different origins are 

isolated from each other
● Address Bar Correctness

○ Page content displayed is the same as 
the address in the address bar



Architecture
● IBOS kernel

○ Process creation, memory 
management, message passing

● Network process
○ HTTP requests, passes data to and 

from Network Interface Card
○ One network process per unique site

● Web app
○ One app per page, represents the 

rendered tab
○ Multiple web apps can talk to one 

network process, only if same site



Security Goals
1. The kernel must route network requests from 
web page instances to the proper network process. 

2. The kernel must route Ethernet frames from the 
network interface card (NIC) to the proper network 
process. 

3. Ethernet frames from network processes to the 
NIC must have an IP address and TCP port that 
matches the origin of the network process. 

4. HTTP data from network processes to web page 
instances must be from acceptable origins. 

5. Network processes for different web page 
instances must remain isolated. 

6. Isolation of the browser chrome (UI elements) 
and web page content displays. 

7. Only the current tab can access the screen, 
mouse, and keyboard. 

8. All components can only perform their 
designated functions. 

9. The URL of the current tab is displayed to the 
user.



IBOS Specification - Sample Initial State



Example: New URL Rule



Example: Kernel Messages



Formal Verification - Trigger / Internal Rules

● Split rules into two types, trigger and internal
● A trigger rule is any rule that takes an action (new url or switch tab)
● Internal rules are the rest of the rules
● We can normalize the state by executing internal rules until there are no more 

rewrites possible
● Run trigger rule followed by normalization repeatedly, yields same result as 

any order of trigger and internal rules (because they are independent)



Formal Verification - Address Bar Correctness

● A trigger rule corresponds to some action taken (new url or switch tab).
● Inspect generates all possible sequences of trigger rules
● Use model checking to verify all possible sequences of 3 trigger rules have 

address bar correctness
● Argue if there is a violation in 4 or more trigger rules, we can reduce it to a 

violation using only 3 trigger rules, which we know can’t exist



Search for Mismatched Network Proc and Web App



Verification of the IBOS 
Browser Security Properties 

in Reachability Logic

Stephen Skeirik, José Meseguer, Camilo Rocha



Motivation

● Sasse’s paper uses a hand-made proof to complete the ABC and 
SOP invariants

● Instead, create an inductive invariant strong enough to be true for all 
rewrite rules

● Once we have an inductive invariant, can use reachability logic prover



Invariants

● Red = Reachable from initial states
● Blue = Invariant
● White = All states
● All reachable states are inside 

invariant



Invariants

● Blue = Inductive Invariant
● White = All states
● If a state is inside the invariant, then 

any following state will also be 
inside the invariant

● Given I is true, after any rewrite, I is 
still true

● Assuming our program can get to a 
state where I is true, I will stay true



Creating Inductive Invariant

● Initial requirements:
● Address bar contains U
● Display contains U’
● U’ is either blank or equal to U
● The state is well formed
● Proof fails (invariant is not strong enough to prove itself under every 

rewrite rule)



Creating Inductive Invariant

● Web app exists (WA)
● WA is active
● Displayed content related to URL
● URL related to web app URL
● Not strong enough still



Why It’s Failing

● In change-display, we have a webapp with rendered content
● Our invariant does not state anything about rendered content in a 

webapp
● This means we are replacing displayedContent with an unknown 

value so we cannot say the invariant still holds



Creating Inductive Invariant

● All web apps have rendered content equal to URL
● Important if a rewrite rule uses the rendered content, otherwise we 

have no assertions about what the rendered content could be



Creating Inductive Invariant

● Add in R(...), ensuring rendered content relates to URL
● Proof succeeds
● Adding these statements allows us to assert the invariant is true for all 

rewrite rules
○ Ex: Without rendered content matching URL, we can’t verify a rule 

transferring the content from web app to display



Our Project

● Add a new module IBOS-EXTEND
○ Opens a TCP socket from maude to python
○ Use erewrite instead of rewrite (external objects)

● Create SOCKS module, which is a proxy server with a whitelist
● Create firefox instance piped to a SOCKS proxy, representing web 

apps and network procs from IBOS
● Python code displays UI by asking maude



Our Project

● SOCKS servers created inside 
maude, free and easy 
parallelism due to using rewrite 
rules

● Firefox processes have network 
calls hijacked using socksify 
CLI

● Now working on model 
checking the system to verify 
IBOS goals still hold



Our Project


