PART I Fundamental Concepts in Quantum Information - Multi-qubit systems - superposition \& entanglement
quanturn circuits

TODAY Partial Measurements \& "Spooky Action at a distance"

RECAP

Why: Suppose Alice \& Bob had unentangled particles

Same happens on other basis vectors $|01\rangle,|10\rangle, 111\rangle$

Exercises (in-class) (1)
 What is the state at the end?
(2) Let $S=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad$ What is the state (I®NOT).S.IU \rangle

What if we measure one of the quits?

Born's Rule for Partial Measurements

Suppose Alice \& Bob have 2 photons in an entangled state possibly
Alice

Bob

$$
\begin{array}{r}
\left.\alpha_{00}(00)+\alpha_{01} \mid 01\right) \\
+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
\end{array}
$$

Measure both particles in $\{|0\rangle, 11\rangle\}$ basis
$\mathbb{P}\left[\right.$ outcome " 100 "] $=\left|\alpha_{00}\right|^{2}$ \& state becomes $|00\rangle$
\qquad and so on ...

Suppose only Alice's photon is measured in $\{|0\rangle,|1\rangle\}$ basis
What are the outcome probabilities? What is the collapsed state?

Alice

Bob

Answer: $\mathbb{P}\left[\right.$ outcome is $\left."|0\rangle^{n}\right]=\left|\alpha_{00}\right|^{2}+\left|\alpha_{0}\right|^{2}:=p_{0}$ sum of squared amplitudes of terms where Alice's quit is 10\rangle

State after outcome "I0>"

$$
\frac{\left.\alpha_{00} \mid 00\right)+\alpha_{01}\left|0_{1}\right\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}=\left[\begin{array}{l}
\frac{\alpha_{00}}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}} \\
\frac{\alpha_{01}}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}} \\
0 \\
0
\end{array}\right]
$$

Similarly, $\mathbb{P}\left[\right.$ outcome is "|1|"] $=1-p_{0}=\left|\alpha_{10}\right|^{2}+\left.\left|\alpha_{1}\right|\right|^{2}:=p_{1}$
and state collapses to

$$
\frac{\alpha_{10}}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}+\frac{\alpha_{11}}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}
$$

Observe: The collapsed state is c unentangled

$$
\text { outcome "|0|": }|0\rangle \otimes\left(\frac{\alpha_{00}}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}|0\rangle+\frac{\alpha_{01}}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}|1\rangle\right)
$$

$$
\text { Outcome " } \left.\mid q)^{\prime \prime}:|1\rangle \otimes\left(\frac{\alpha_{10}}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}|0\rangle+\frac{\alpha_{11}}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}} 11\right\rangle\right)
$$

Subtlety We know what the state is if wee see the measurement outcome?
But how do we describe the post-measurement state if we haven't. observed the outcome?

Alice

(?) \leftarrow This is what is called a mixed state
Bob which is a probability distribution over quanturn states

What we have been looking at so far are pure quantum states In some sense, a mixed state is the true quantum state of a system We will mainly study pure quantum states since in quantum computingone can assume WLOG that measurement only happens at the end We might talk about how to represent mixed states later in the course
(Mixed) State ? is : $\begin{cases}p_{0} \text { chance : } \frac{\alpha_{00}}{\sqrt{p_{0}}}|0\rangle+\frac{\alpha_{01}}{\sqrt{p_{0}}}|1\rangle & \text { (case "0") } \\ p_{1} \text { chance }: \frac{\alpha_{10}}{\sqrt{p_{1}}}|0\rangle+\frac{\alpha_{11}}{\sqrt{p_{1}}}|1\rangle & \text { (case "1") }\end{cases}$

What happens if we measure the $2^{\text {nd }}$ qubit?
In case "0": \mathbb{P} [Bob's measurement outcome is "0"] $=\left|\frac{\alpha_{00}}{\sqrt{p_{0}}}\right|^{2}=\frac{\left|\alpha_{00}\right|^{2}}{P_{0}}$
and state collapses to $\frac{\frac{\alpha_{00}}{\sqrt{P_{0}}}}{\sqrt{\left|\frac{\alpha_{00}}{\sqrt{P_{0}}}\right|^{2}}}=\frac{\sqrt{\left.\frac{\alpha_{00}}{\left|\alpha_{00}\right|} \right\rvert\,}|00\rangle}{\text { Global phase }}$
\mathbb{P} [Bob's measurement outcome is "1"] $\left|\frac{\alpha_{01}}{\sqrt{p_{0}}}\right|^{2}=\frac{\left|\alpha_{01}\right|^{2}}{p_{0}}$ and state collapses to $\left.\frac{\alpha_{01}}{\left|\alpha_{01}\right|} 101\right\rangle$

Similar for case "1"

$$
\mathbb{P}[\text { outcomes are } " 00 "]=p_{0} \cdot \frac{\left|\alpha_{00}\right|^{2}}{p_{0}}=\left|\alpha_{00}\right|^{2}
$$

\& state collapses to $\frac{\alpha_{00}}{\left|\alpha_{00}\right|}|00\rangle$

$$
\mathbb{P}[\text { outcomes are "on" }]=P_{\sigma} \cdot \frac{\left|\alpha_{01}\right|^{2}}{P_{0}}=\left|\alpha_{01}\right|^{2}
$$

\& state collapses to $\frac{\alpha_{01}}{\left|\alpha_{01}\right|}|01\rangle$

Another subtle point Suppose Alice and Bob have an unentangled two quit state

$$
|\psi\rangle \otimes|\phi\rangle
$$

Suppose Alice walks away, what 's the state of Bob's quit?
Answer: $|\phi\rangle$

What if Alice $\&$ Bob had a two quit entangled state

$$
|\psi\rangle \in \mathbb{C}^{4}
$$

If Alice walks away, what's the state of Bob's quit?
We can describe in terms of a mixed state

Alice measures her qubit to be "0": po chance \& state collapses to

$$
|0\rangle \otimes\left(\frac{\alpha_{0} 0}{\sqrt{p_{0}}}|0\rangle+\frac{\alpha_{01}}{\sqrt{p_{0}}}|1\rangle\right)
$$

Alice measures her qubit to be " 1 ": p_{1} chance \& state collapses to

$$
|1\rangle \otimes\left(\frac{\alpha_{10}}{\sqrt{p_{1}}}|0\rangle+\frac{\alpha_{11}}{\sqrt{P_{1}}}|1\rangle\right)
$$

State of Bob's quit can only be described by the mixed state:

$$
\begin{aligned}
& \text { Po chance: } \frac{\alpha_{00} 0}{\sqrt{p_{0}}}|0\rangle+\frac{\alpha_{01}}{\sqrt{p_{1}}}|1\rangle \\
& P_{1} \text { chance : } \frac{\alpha_{10}}{\sqrt{p_{1}}}|0\rangle+\frac{\alpha_{11}}{\sqrt{p_{1}}}|1\rangle
\end{aligned}
$$

Any measurement that Bob performs on this mixed state will give the same outcome This is because the order of measurements does not matter

Partial Measurements for Qudits

Suppose Alice and Bob have entangled qutrits

$$
\left.\alpha_{11}|11\rangle+\alpha_{12}| | 2\right\rangle+\alpha_{11}|13\rangle+\alpha_{21}|21\rangle+\ldots+\alpha_{33}|33\rangle
$$

$\mathbb{P}[$ Alice's measurement is " 11$]=\left|\alpha_{11}\right|^{2}+\left|\alpha_{12}\right|^{2}+\left|\alpha_{13}\right|^{2}:=p_{1}$

2 state becomes $\frac{\alpha_{11}|11\rangle+\alpha_{12}|12\rangle+\alpha_{13}|13\rangle}{\sqrt{p_{1}}}$
and so on

EPR Paradox Suppose Alice \& Bob have an EPR pair
$\left.\begin{array}{ll}\text { Alice } & \cdot \\ \text { Bob }\end{array}\right\} \begin{aligned} & \text { Bell State } \\ & \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\end{aligned}$

Alice can walk far away and the particles are still entangled

Suppose Alice goes to moon \& measures her quit, what happens?
50% chance of measuring " 10\rangle " say

Now, joint state becomes $\mid 00$) $=|0\rangle$ © 10\rangle

Bob's qubit becomes 10) \& this happens instanteously $\rightarrow I_{s}$ this faster than light communication?

This is what Einstein called "spooky action at a distance"
One can make two arguments that there is no violations of physical rules here
(1) Alice doesn't really convey any information

When she measures, she gets a random bit which she doesn't apriori know
(2) There is a classical scenario which has the same outcome:

Suppose a coin is flipped \& two coins with the same outcome are given to Alice \& Bob each

Alice doesn't look at her coin, until she gets to moon When she looks at the coin, she knows Bob's outcorne as well but no physical rules are violated here

Such a theory is called a "Local Hidden Variable" theory
There are real states of the particles (as opposed to superposition) and we are only seeing probabilistic outcomes because we don't know the hidden variables

Einstein wanted the answer to be yer because of the following thought experiment by EPR:
(3) Suppose Alice measures her quit in a different basis egg. in $1 \pm$) basis

What happens to Bob's quit?
Let's compote it in two different ways

First Simulate $1 \pm$ measurent with unitary + Std. basis measurement

State (1): $\frac{1}{\sqrt{2}}(H|0\rangle) \otimes|0\rangle+\frac{1}{\sqrt{2}}(H|1\rangle) \otimes|1\rangle$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}|+\rangle \otimes|0\rangle+\frac{1}{\sqrt{2}}(\rightarrow|1\rangle \\
& =\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle
\end{aligned}
$$

State (2): A measures $\mathbb{P}[$ measures 0$]=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}$

$$
\begin{aligned}
\rightarrow \text { state changes to } & |0\rangle \otimes\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)=|0\rangle(\otimes|+\rangle \\
& \uparrow \\
& \text { interprets as measuring " } H\rangle "
\end{aligned}
$$

State (3): Rotate back to get the correct state when we measure in the $I \pm>$ basis
\rightarrow State becomes $|+\rangle \otimes|+\rangle \rightarrow$ final state
\uparrow
Bob's state is also $1+7$

In the other case, with probability $1 / 2$, measures " 1 " \rightarrow interprets as " $\mid-$ "
final state is $|->\otimes|-7$

This is similar to what happened if Alice measured in $\{10\rangle, 1 r\rangle\}$ basis

Here, with 50% chance, she either gets a $1+7$ or a 1-7
\& Bob's state collapses to whatever Alice measures

Second Let's do the above computation differently \& directly try to measure in $\pm>$ basis

$$
\text { EPR pair: } \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Let's express the first qubit in the 1 ± 7 basis

$$
\begin{aligned}
& |00\rangle=|0\rangle \otimes|0\rangle=\left(\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}}|-\rangle\right) \otimes|0\rangle \\
& |11\rangle=|1\rangle \otimes|1\rangle=\left(\frac{1}{\sqrt{2}}|+\rangle-\frac{1}{\sqrt{2}}|-\rangle\right) \otimes|1\rangle
\end{aligned}
$$

$$
\begin{aligned}
\text { Final state } & =\frac{1}{2}|+0\rangle+\frac{1}{2}|-0\rangle+\frac{1}{2}|+1\rangle-\frac{1}{2}|-1\rangle \\
& =1+\rangle \otimes\left(\frac{1}{2}|0\rangle+\frac{1}{2}|1\rangle\right)+|-\rangle \otimes\left(\frac{1}{2}|0\rangle-\frac{1}{2}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}|++\rangle+\frac{1}{\sqrt{2}}|--\rangle!!!
\end{aligned}
$$

EPR pair is an equal superposition of two different bases
If Alice measures in $| \pm\rangle$ basis:

$$
\begin{aligned}
& \left.\mathbb{P}[\text { measures " } 1+)^{\prime \prime}\right]=\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2} \quad \text { and similarly for the other case } \\
& \text { and state collapses to } 1+\text {) }
\end{aligned}
$$

This is more spooky than before because Alice can maybe convey some information to Bob instanteously by deciding to measure either in $\{10\rangle, 11\rangle\}$ or $\{(H), 1-7\}$ basis

Bob's state changes to something that Alice knows which is different depending on the basis

Has Alice managed to convey one bit of information to Bob via the following protocol:

Alice wants to send " O " to Bob: Measure in Std. basis

$$
\left.\begin{array}{l}
\text { so\% chance: Bob's state becomes } 10\rangle \\
50 \% \text { chance: } \quad|1\rangle
\end{array}\right\} \text { Mixed state } \rho_{0}
$$

Alice wants to send " 1 " to Bob: Measure in $\{1+7\}$ basis
$\left.\begin{array}{l}50 \% \text { chance: Bob's state becomes } 1+\rangle \\ 50 \% \text { chance: } \quad 1->\end{array}\right\}$ Mixed state ρ_{2}
Bob does some local operation on his qubit to decode the message
Resolution: There is no local operation that Bob can do that distinguishes the two mixed states $\rho_{0} \& \rho_{1}$

NEXT TIME Quantum Mechanics is not a "Local Hidden Variable" theory \rightarrow Entanglement is real

