PART I Fundamental Concepts in Quantum Information $\left[\begin{array}{l}\text { One-qubit } \begin{array}{l}\text { superposition } \\ \text { - measurement } \\ \text { unitary transformations }\end{array} \\ \text { Multiple quits } \begin{array}{l}\text { superposition } \\ \text { partial measurements } \\ \text { quantum circuits } \\ \text { entanglement }\end{array}\end{array}\right.$
TODAY Quantum Circuits and Entanglement
RECAP Say Alice has a quit $|\psi\rangle$ and Bob has a qubit $|\phi\rangle \in \mathbb{C}^{2}$
Question 1: What is the joint 4-d state?
Question 2: If Bob applies a unitary $U \in \mathbb{C}^{2 \times 2}$ to his quit, what is the new 4-d state?

Question 3: If only Alice measures her quit, what happens?

Joint state

$$
\begin{array}{cc}
\text { Alice } d \text {-qudit } & \text { Bob e-qudit } \\
|1\rangle\rangle\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\vdots \\
|d\rangle \\
\alpha_{d}
\end{array}\right] & \left.\left.|\phi\rangle=\begin{array}{c}
1\rangle\rangle
\end{array}\right] \begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{e}
\end{array}\right]
\end{array}
$$

Joint state is de-dimensional quit

$\|11\rangle$
$\|12\rangle$
\vdots
$\|1 e\rangle$
$\|21\rangle$

\alpha_{1} \beta_{2} \\
\vdots \\
\alpha_{1} \beta_{e} \\
\alpha_{2} \beta_{1} \\
\vdots \\
|\operatorname{de}\rangle \\
\alpha_{d} \beta_{e}\end{array}\right]=\left[$$
\begin{array}{c}\alpha_{1}\left[\begin{array}{c}\beta_{1} \\
\vdots \\
\beta_{e}\end{array}\right] \\
\left.\left.\alpha_{2}\left[\begin{array}{c}\beta_{1} \\
\vdots \\
\beta_{e}\end{array}\right]=|\psi\rangle \otimes|\phi\rangle, \begin{array}{c} \\
\vdots \\
\alpha_{d}\end{array}\right] \begin{array}{c}\beta_{1} \\
\vdots \\
\beta_{e}\end{array}\right]\end{array}
$$\right]\)

This operation is called a tensor product.

More generally, tensor product of two matrices A and B :

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \\
a_{m 1} & \cdots & \cdots
\end{array}\right] } \\
& \quad B=\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 q} \\
\vdots & & \\
b_{p 1} & \cdots & b_{p q}
\end{array}\right] \\
m \times n \text { matrix } & p \times q \text { matrix }
\end{aligned}
$$

$$
A \otimes B=\left[\begin{array}{l|l|l|l}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
\hline & & & \\
\hline & & & a_{m n} B
\end{array}\right]
$$

Each block is a $p \times q$ matrix
$m p \times n q$ matrix
E.g. $|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l|l}1 & |00\rangle \\ 0 & |01\rangle \\ 0 & 110\rangle \\ 0 & |11\rangle\end{array}="|00\rangle "\right.$
$\mid 0) \otimes|t\rangle=\binom{1}{0} \otimes\binom{1 / \sqrt{2}}{1 / \sqrt{2}}=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0 \\ 0\end{array}\right)=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

Demonstrates that tensor product is not a commutative operation
$\cdot|+\rangle \otimes|-\rangle=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right] \otimes\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right] \begin{aligned} & 1007 \\ & 1017 \\ & 110) \\ & 111\rangle\end{aligned}$

Let's do this in the kat notation

$$
\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|7\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle
$$

Properties of tensor product

- Acts like "non-commutative multiplication"

$$
\begin{aligned}
& (A+B) \otimes C=A \otimes C+B \otimes C \\
& A \otimes(B+C)=A \otimes B+A \otimes C \\
& A \otimes(B \otimes C)=(A \otimes B) \otimes C=A \otimes B \otimes C
\end{aligned}
$$

Egg. Alice

$$
\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \quad\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right] \quad\left[\begin{array}{l}
r_{0} \\
r_{1}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\alpha_{0} \beta_{0} \gamma_{0} \\
\alpha_{0} \beta_{0} \gamma_{1} \\
\vdots \\
\vdots \\
\alpha_{1} \beta_{1} \gamma_{1}
\end{array}\right] \quad \begin{gathered}
1000\rangle \\
1001\rangle \\
|111\rangle
\end{gathered}
$$

$$
\begin{gathered}
(A \otimes B)^{+}=A^{+} \otimes B^{+} \\
(A \otimes B) \cdot(C \otimes D)=(A C) \otimes(B D) \\
\text { matrix } \\
\text { multiplication }
\end{gathered}
$$

Quantum Circuits

Let's suppose Alice and Bob each prepared a quit and got together

Alice These two particles have a joint state

Bob

$$
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

Let's imagine they go in a physical device that changes their state (jointly) e.g. the device applies a CNOT operation

"If the control qubit is 0 , do nothing Else, apply a NOT to the target quit"

$$
\text { Formally, } \begin{aligned}
|00\rangle & \rightarrow|00\rangle & |10\rangle & \rightarrow|11\rangle \\
|01\rangle & \rightarrow|01\rangle & |11\rangle & \rightarrow|10\rangle
\end{aligned}
$$

The matrix representation of CNOT is

This is a permutation matrix, so it is easy to see that this is a unitary transformation

What is the joint state of Alice and Bob's qubit after cNOT?
We draw this operation as a "quantum circuit" diagram

Alice

Let's draw a more interesting quantum circuit now

Recall
$H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
(0) \rightarrow (+)
|1 $\rightarrow|-\rangle$

What are the states at locations (1), (2) and (3)?

State at location (1): 100\rangle
at location (2): Alice only applies a gate to her qubit $\mathrm{H}(\mathrm{O}\rangle=|+\rangle$ so, state is
at location (3): CNOT swaps the amplitude of $|10\rangle$ \& $|11\rangle$
so, state is

$$
\begin{array}{r}
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \text { Bell state } \\
\text { OR EPR pair }
\end{array}
$$

Theorem Bell State is not of the form $|\psi\rangle \otimes|\phi\rangle$ for any $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{2}$
This means that such states can only arise when the particles interact
Proof Let $|\psi\rangle=\left[\begin{array}{l}\alpha_{0} \\ \alpha_{1}\end{array}\right]$ and $|\phi\rangle=\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]$
Then $|\psi\rangle \otimes|\phi\rangle=\left[\begin{array}{l}\alpha_{0} \beta_{0} \\ \alpha_{0} \\ \beta_{1} \\ \alpha_{1} \\ \beta_{0} \\ \alpha_{1} \beta_{1}\end{array}\right]$

Observe that the product of amplitudes on $\mid 01$) \& $|10\rangle$ $=$ product of amplitudes on $|00\rangle$ \& $|1|\rangle$
for any tensor product state
This is not true for the Bell state

Definition A state on multiple quits is called entangled across a bipartition (of the quits) if it cannot be written as $|\psi\rangle \otimes|\phi\rangle$ for any $|\psi\rangle \otimes|\phi\rangle$

It is not obvious just by looking at a state if its entangled E.g. Is $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|1\rangle$ entangled?

Suppose Bob applies a NOT gate to her quit \rightarrow This is 2×2 unitary How can we make sense of this?

Alice

Bob

At location (4): $\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|20\rangle$

Suppose Alice now applies a H grate

Alice Bob

At location (5): with amplitude $\frac{1}{\sqrt{2}}$, state is 101 (\uparrow)
applying H to Alice's quit gives $(H|0\rangle) \otimes|1\rangle$

$$
\begin{aligned}
& =|t\rangle \otimes|1\rangle \\
& =\frac{1}{\sqrt{2}}|0\rangle \otimes|1\rangle+\frac{1}{\sqrt{2}}|1\rangle \otimes|1\rangle \\
& =\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|11\rangle
\end{aligned}
$$

with $\frac{1}{\sqrt{2}}$ amplitude, state is $\mid 10$)

$$
\text { applying } \begin{aligned}
H \text { to Alice's quit gives } & (H|1\rangle) \otimes|0\rangle \\
= & |-\rangle \otimes|0\rangle \\
= & \frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|10\rangle
\end{aligned}
$$

$$
\text { Final state, } \begin{aligned}
& \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)+\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|10\rangle\right) \\
= & \frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle
\end{aligned}
$$

In general, say we have a 2-qubit state $\left[\begin{array}{l}\alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11}\end{array}\right] \in \mathbb{C}^{4} \quad$ and $a 2 \times 2$ unitary $U=\left[\begin{array}{ll}p & r \\ q & s\end{array}\right]$
What is the state after we apply U to $2^{\text {nd }}$ quit?

WLOG we only need to figure out what happens on the basis states 1007,101$\rangle, 1107,1117$

$$
\begin{aligned}
& |00\rangle=|0\rangle \otimes|0\rangle \\
& \underset{2^{\text {nd } q u b i t}}{U \text { on }}|0\rangle \otimes U|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
p \\
q
\end{array}\right]=\left[\begin{array}{l}
p \\
q \\
0 \\
0
\end{array}\right] \\
& |01\rangle=|0\rangle \otimes(1\rangle \xrightarrow{u}|0\rangle \otimes u(1\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
r \\
s
\end{array}\right]=\left[\begin{array}{l}
r \\
s \\
0 \\
0
\end{array}\right] \\
& |10\rangle \stackrel{u}{\mapsto}\left[\begin{array}{l}
0 \\
0 \\
p \\
q
\end{array}\right], \quad|11\rangle \stackrel{u}{\longmapsto}\left[\begin{array}{l}
0 \\
0 \\
r \\
s
\end{array}\right]
\end{aligned}
$$

Matrix for the overall transformation is

$$
\left[\begin{array}{cccc}
00 & 01 & 10 & 11 \\
p & r & 0 & 0 \\
q & s & 0 & 0 \\
0 & 0 & p & r \\
0 & 0 & q & s
\end{array}\right]=I_{2 \times 2} \otimes U
$$

If you did U to $1^{\text {st }}$ quit and nothing to $2^{\text {nd }}: U \otimes I_{2 \times 2}$

$$
\text { and } V \text { to } 2^{\text {nd }}: U \otimes V
$$

E. \%

Alice

The order does not matter if you apply separate transformations on each particle -

