PART I Fundamental Concepts in Quantum Information \square superposition Measurements

This Lecture

- Elitzur- Vaidman Puzzle (contd)
- Unitary Transformations \& Multi-qubit systems

RECAP How to transform state of a quit?

E.g. Reflection around 45°	line
$\left\lvert\,$$(N O T)$ $\|0\rangle$ $\rightarrow\|1\rangle$ $\|1\rangle$ $\rightarrow\|0\rangle$$\quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad\right.$ Also, called	
\times gate	

Reflection around 22.5° line (Hadamard H)
$|0\rangle \rightarrow|+\rangle$
$|1\rangle \rightarrow|-\rangle$$\quad\left[\begin{array}{ll}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]$

REvisit Elitzur-Vaidman Bomb Tester

Dud OR Bomb fuse attached to " \leftrightarrow " filter

Nothing happens

Photon measured in $\{(0),|1\rangle\}$
basis \otimes bomb exploder if $|1\rangle$ is measured of photon comes out

Classically no chance of detecting1+) state gave us 25% chance

Let's try to give a better algorithm using the new operations introduced

- Start with 10)
- Apply R_{ε} where $\varepsilon=\frac{\pi}{2 n}$ for $n=100000$
- Send into box
- If no explosion, repeat steps 2 and $3 n$ times
- Measure in standard basis

Case Dud: Qubit exits at angle ε

Case Bomb: $\mathbb{P}\left[\right.$ measure " $\left.|0\rangle^{\prime \prime}\right]=(\cos \varepsilon)^{2}$ and then 10\rangle exits
$\mathbb{P}[$ measure " 11 " $]=(\sin \varepsilon)^{2}=\varepsilon^{2}$

If no explosion, photon comer out in state 10)
Repeat steps 2 and 3 n times

Analyzing Full Algorithm Case Dud: After n rotations, state of quit is 11)
since each rotation is $\frac{\pi}{2 n}$

Case Bomb: Final state assuming no explosion is $|0\rangle$

$$
\mathbb{P}[\operatorname{explosion}]=n \cdot \varepsilon^{2}=\frac{\pi^{2}}{4 n}=\text { small }
$$

Measuring in standard basis: Dud $\rightarrow 11\rangle$ Perfectly distinguish

$$
\text { Bomb } \rightarrow|0\rangle \text { if there is no explosion }
$$

Rotation and Reflection operations are what are called unitary transformations! We will talk about them more generally so let us first introduce a quit.
d-Qudit A quantum system in superposition of d basic states $|1\rangle, 127, \ldots .|d\rangle$

$$
\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{d}
\end{array}\right)=|\psi\rangle=\alpha_{1}|1\rangle+\ldots .+\alpha_{d}|d\rangle \text { where }\left|\alpha_{1}\right|^{2}+\ldots+\left|\alpha_{d}\right|^{2}=1
$$

State of a qudit can also be changed by rotation/reflection in d-dimensions

QM Law 3 A quoit state can be changed by any linear transformation that preserves length
These are called unitary transformations $u \in \mathbb{C}^{d \times d}$

$$
\begin{aligned}
u \text { s.t. } \forall|\psi\rangle & \| u|\psi\rangle\left\|^{2}=\right\| \psi \|^{2} \\
& \Leftrightarrow(u|\psi\rangle)^{+}(U|\psi\rangle)=\langle\psi \mid \psi\rangle \\
& \Leftrightarrow\langle\psi| U^{+} \cup|\psi\rangle=\langle\psi \mid \psi\rangle
\end{aligned}
$$

This can only happen iff $U^{+} U=I$
If $u=\left(\begin{array}{ccc}1 & & 1 \\ u_{1} & \ldots & u_{d} \\ 1 & & 1\end{array}\right)$ then $u^{+}=\left(\begin{array}{c}-u_{1}^{+}- \\ \vdots \\ -u_{d}^{+}-\end{array}\right)$

$$
\text { So, if } U^{+} U=\left(\begin{array}{cccc}
u_{1}^{+} u_{1} & u_{1}^{+} u_{2} & \ldots & u_{1}^{+} u_{d} \\
u_{2}^{+} u_{1} & u_{2}^{+} u_{2} & \ldots & u_{2}^{+} u_{d} \\
& & \ldots & \\
& & &
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
0 & & \\
& & 1
\end{array}\right)
$$

then columns of U form an orthonormal basis
Another equivalent defn: $U U^{+}=I \Leftrightarrow$ inverse of $U=U^{+}$
This implies that if U is allowed, then so is U^{-2} All unitary operations are reversible

Another equivalent defn: U preserves angles (or inner products)

$$
(u|\phi\rangle)^{+} u|\psi\rangle=\langle\phi| u^{+} u|\psi\rangle=\langle\phi \mid \psi\rangle
$$

E.g. (On quits) $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \rightarrow$ check that it is unitary

$$
\begin{aligned}
& \text { NOT }=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \\
& S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

E.g. (On quits with $d=3$) $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}\gamma \\ \alpha \\ \beta\end{array}\right] \quad$ preserves length

Permutation
Matrix

$$
\begin{aligned}
\text { (Quoits with } d=4 \text {) SWAP } & =00\left(\begin{array}{cccc}
00 & 0 & 10 & 11 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& H^{\otimes 2}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Fun fact: Every unitary U has a square root

$$
\text { egg. } \sqrt{R_{\theta}}=R_{\theta / 2} \quad \text { and } \quad \sqrt{N O T}=\frac{1}{2}\left(\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right)
$$

Multi-qubit systems

Most common way of obtaining a quoit : 2 quits

$$
\begin{aligned}
& \text { e.g. photon } " 0 "=\leftrightarrow \text { or } " 1 "=\hat{\downarrow} \\
& \text { state } \left.r_{00}|00\rangle+r_{01}|01\rangle+r_{10}|10\rangle+r_{1 \mid}|1|\right\rangle
\end{aligned}
$$

Say Alice has a quit $|\psi\rangle$ and Bob has a quit $|\phi\rangle \in \mathbb{C}^{2}$
Question 1: What is the joint 4-d state?
Question 2: If Bob applies a unitary $U \in \mathbb{C}^{2 \times 2}$ to his quoit, what is the new 4-d state?

Question 3: If only Alice measures her quit, what happens?

Lets try to answer question 1.
We can view two quits as a joint 4-d system:

Say Alice's quit $|\Psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
Bob's quit $|\phi\rangle=\beta_{0}|0\rangle+\beta_{1}|1\rangle$
Analogous to the probability rules for flipping two coins,
Overall amplitude of $|00\rangle=\alpha_{0} \beta_{0}$
So, $\gamma_{00}=\alpha_{0} \beta_{0}, \gamma_{01}=\alpha_{0} \beta_{1}, \gamma_{10}=\alpha_{1} \beta_{0}, \gamma_{11}=\alpha_{1} \beta_{1}$
This better be a quantum state. Let's check that

$$
\left|\gamma_{00}\right|^{2}+\left|\gamma_{0}\right|^{2}+\left|\gamma_{10}\right|^{2}+\left|\gamma_{11}\right|^{2}=\left(\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}\right)\left(\left|\beta_{0}\right|^{2}+\left|\beta_{1}\right|^{2}\right)=1.1=1
$$

More generally, what is the joint state of two quits?
QM Law 4 Alice d-qudit
Bob e-qudit

$$
\left.|\psi\rangle=\begin{array}{c}
|1\rangle \\
\vdots \\
|d\rangle
\end{array}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{d}
\end{array}\right] \quad|\phi\rangle=\begin{array}{c}
|1\rangle \\
\vdots \\
\vdots \\
\beta_{1} \\
\beta_{e}
\end{array}\right]
$$

Joint state is de-dimensional quit

$$
\left.\begin{array}{c}
||1\rangle \\
|12\rangle \\
\vdots \\
|1 e\rangle \\
|2|\rangle \\
\vdots \\
|\operatorname{de}\rangle \\
\alpha_{1} \beta_{2} \\
\vdots \\
\alpha_{1} \beta_{e} \\
\alpha_{2} \beta_{1} \\
\vdots \\
\alpha_{d} \beta_{e}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1}\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{e}
\end{array}\right] \\
\left.\alpha_{2}\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
B_{e}
\end{array}\right]=|\psi\rangle \otimes|\phi\rangle, \begin{array}{c}
\beta_{1} \\
\vdots \\
\alpha_{d}
\end{array}\right]
\end{array}\right]
$$

This operation is called a tensor product.

More generally, tensor product of two matrices A and B :

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \\
a_{m 1} & \ldots & \ldots \\
a_{m n}
\end{array}\right] \quad B=\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 q} \\
\vdots & & \\
b_{p 1} & \ldots & b_{p q}
\end{array}\right] \\
& m \times n \text { matrix } p \times q \text { matrix } \\
& A \otimes B=\left[\begin{array}{l|l|l|l}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
\hline & & & \\
\hline & & & a_{m n} B
\end{array}\right] \text { Each block is a px matrix } \\
& m p \times n q \text { matrix }
\end{aligned}
$$

NEXT LECTURE Multi-qubit system (contd)
Quantum Circuits \& Entanglement

