PART I Fundarnental Concepts in Quantum Information

This Lecture Measurements in different basis \& Global vs Relative Phase
Elitzur-Vaidman Bomb Tester

Unitary Transformations or Quantum Gates

QM law 1 Qubit can be in superposition of 10\rangle \& $\mid 1$)

QM Law 2 (Standard) Measurement has two outcomes " 10$\rangle^{\prime \prime}$ or " 11 ")
Born's rule

$$
\begin{aligned}
& \text { if }|\psi\rangle=\underbrace{\langle 0 \mid \psi\rangle}=\text { projection of }|0\rangle \text { on }|\psi\rangle=\cos (\text { angle b/w }|0\rangle \&|\psi\rangle) \\
& \text { measurement outcome is " }|0\rangle \text { " and similarly for " }|1\rangle \text { " } \\
& \text { with prob. }|\alpha|^{2} \\
& \& \text { state "collapses" to }|0\rangle
\end{aligned}
$$

Exercise (In-class) (1) What is $\langle\psi|$ in terms of $\{|0\rangle,|1\rangle\}$ basis?
(2) What is $|\Psi X \psi|$?

Measurement writ different basis $\left\{\left|b_{0}\right\rangle,\left|b_{1}\right\rangle\right\}$

$$
|\psi\rangle=\alpha\left|b_{0}\right\rangle+\beta\left|b_{1}\right\rangle
$$

Measurement outcome is " $\left|b_{0}\right\rangle$ " and similarly for " $\left|b_{1}\right\rangle$
with prob. $|\alpha|^{2}$
state "collapses" to $\left|b_{0}\right\rangle$
$\xrightarrow{\text { Example }} \stackrel{\substack{\text { Measure in } \\\{1+\rangle, 1-\rangle\}}}{\substack{\text { Outcome } \\ \text { " } 1+)^{\prime \prime} \text { "w.p. } 1}} \rightarrow$ state "collapses" to $\left.1+\right\rangle$.

These example tell us the following:
If outcome in Hadamard basis is determined, then outcome in standard basis is uniform and vice versa

This is the "uncertainty principle"

Revisit Filter

Is there a difference between $|\psi\rangle$ and $-|\psi\rangle$?

No measurement can distinguish them
For any basis $\left\{\left|b_{0}\right\rangle,\left|b_{1}\right\rangle\right\}$ in which we measure

$$
\begin{aligned}
|\psi\rangle & =\alpha\left|b_{0}\right\rangle+\beta\left|b_{1}\right\rangle \quad \text { so prob. of outcomes is identical } \\
-|\psi\rangle & =-\alpha\left|b_{6}\right\rangle-\beta\left|b_{1}\right\rangle
\end{aligned}
$$

In general, for any $\theta \in \mathbb{R}$

$$
|\psi\rangle \text { and } \stackrel{\square}{e^{i \theta}}|\psi\rangle \text { Global phase }
$$

Relative Phase Are $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ and $|-\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}(1\rangle$ Relative phase the same ?

No! They can be distinguished w/prob 1 since they are orthogonal

Elitzur-Vaidman Bomb Tester

Suppose you are given a box which can be in one of two states

Dud OR Bomb fuse attached to " \leftrightarrow " filter

Nothing happens

basis $\&$ bomb explodes if $|1\rangle$
is measured of photon comes out

How can you test which box you are given?

There is nothing you can do with "classical" strategies:
send in $|0\rangle \rightarrow$ no information
send in 11) \rightarrow explodes
Let's try "quantum strategies":

- send in $1+$)
- measure in $\{(t),|-\rangle\}$ basis

Case Dud: read $1+\rangle$ always
Case Bomb: $1+$) measured in $\{10), 117\}$ basis

Summary : If there is a bomb, 50% chance of exploding25% no explosion \& detect bomb 25% inconclusive

Later we will see how to improve it to 99% chance of detecting the bomb

Measurement gives us classical information and collapses the state
For quantum computing, we also need to be able to transform quantum states

Consider a quit with real amplitudes

FACT
For any θ, one can build a physical device that "rotates its state by θ "

E.g. by passing photon through a slab whore length depends on θ or by shooting laser at an electron for time that depends on θ

The linear transformation that rotates by θ is given by the matrix

Can simulate measurement in any basis with Rotation operations and Standard measurements

- Pass $|\Psi\rangle$ through $R_{-\theta}$
$|u\rangle \rightarrow|0\rangle$
(v) $\rightarrow|1\rangle$
- Standard Measurement
" $|0\rangle$ " means measured " $|u\rangle$ "
" $|1\rangle$ " means measured " $|\nu\rangle "$
- Apply R_{θ} to the collapsed state

$$
|0\rangle \rightarrow|u\rangle
$$

$$
|1\rangle \rightarrow|v\rangle
$$

FACT Can also build a physical device that implements a reflection

E.g. if state was $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \otimes$ reflection thru 45°
state becomes $\left[\begin{array}{l}\beta \\ \alpha\end{array}\right]$
The corresponding matrix is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \begin{aligned} & \text { NOT } \\ & \text { gate }\end{aligned}$

$$
\begin{aligned}
& \left.R_{\theta}=\left[\begin{array}{l}
{\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array} \frac{-\sin \theta}{\cos \theta}\right.}
\end{array}\right]\right]_{\text {where 11 goes }} \\
& \text { where }\left[\begin{array}{l}
1 \\
0
\end{array}\right]=|0\rangle \text { goes } \\
& \text { Ecg. } \quad \theta=45^{\circ} \quad R_{45^{\circ}}=\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] \quad \begin{array}{l}
|0\rangle \rightarrow 1+\rangle \\
11\rangle \rightarrow-1->
\end{array}
\end{aligned}
$$

Egg. (with complex amplitudes) Phase shift operation

$$
\begin{aligned}
S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad S\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]= & {\left[\begin{array}{l}
\alpha \\
i \beta
\end{array}\right] } \\
& \downarrow \\
& \text { valid qubit state } \\
& \text { since }|\alpha|^{2}+|i \beta|^{2}=|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

NEXT LECTURE An algorithm for Elitzur-Vaidman puzzle with small error \& more

