PART I Fundamental Concepts in Quantum Information

This Lecture Understanding and Measuring one quit

- Qubits and QM Law 1 (Superposition)
- Measurements and QM Law 2 (Born's Rule) Uncertainty Principle

$$
\begin{array}{ll}\text { - standard } \\ \text { in a different basis }\end{array}
$$

QM Law 1

RECALL Qubit quantum state in superposition of two basic stater " 10\rangle " and " 11\rangle " " α amplitude on 10\rangle, β amplitude on $|1\rangle^{\prime \prime}$
where α, β are complex numbers satisfying- $|\alpha|^{2}+|\beta|^{2}=1$$\quad\binom{\alpha}{\beta} \in \mathbb{C}^{2}$

Eng. a photon may have the state " $\frac{1}{\sqrt{2}}$ amplitude on $|0\rangle, \frac{1}{\sqrt{2}}$ amplitude on $|1\rangle$ " OR

$$
\begin{aligned}
& \begin{array}{l}
\text { Is this a quantum } \left.\leftarrow " \frac{i}{\sqrt{2}} \text { amplitude on } 10\right\rangle, 0 \text { amplitude on }|1\rangle " \\
\text { state? }
\end{array} \\
& \text { OR } \\
& \text { " } \underbrace{\substack{\text { amplitude on } 10\rangle, 0 \text { amplitude on } 11\rangle " \\
"}}_{\begin{array}{c}
\text { called } "|0\rangle " \\
\text { reverse } "|1\rangle "
\end{array}}
\end{aligned}
$$

You cannot read a quantum state, ie., access α, β directly Only way to extract information is via measurement

What happens if a photon in a superposition state goes into the measuring device?

$$
\begin{aligned}
& \xrightarrow[\substack{\text { photon }}]{\bullet \longrightarrow} \\
& \alpha \text { ampl. " }|0\rangle \text { " } \\
& \beta \text { ampl. " } 11\rangle \text { " }
\end{aligned}
$$

This scenario is described by the second law of quantum mechanics

QM Law 2 For a particle with α amplitucle on 10\rangle, β amplitude on $|1\rangle$ (Born's Rule) if you measure it, then

Egg. photon in state " $\frac{4}{5}$ amplitude on 107, $\frac{3}{5}$ amplitude on 11\rangle "

$$
\begin{aligned}
& \text { w.p. } 0.64 \text {, readout shows }|0\rangle \\
& \text { w.p. } 0.36 \text {, readout shows }|1\rangle
\end{aligned}
$$

Example

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \text { amplitude on }|0\rangle \\
& \frac{1}{\sqrt{2}} \text { amplitude on }|1\rangle
\end{aligned}
$$

Example (Filter)

$\frac{1}{\sqrt{2}}$ amplitude on 10)
$\frac{1}{\sqrt{2}}$ amplitude on 11$\rangle \quad$ Block i photons

To describe Born's rule more generally, we first take a detour and introduce quantum notation

Recall a quit in state " α ample. on " 10)", β ample. on " 11$\rangle^{\prime \prime}$ " can be described as a column vector

$$
\binom{\alpha}{\beta} \in \mathbb{C}^{2} \text { s.t. }|\alpha|^{2}+|\beta|^{2}=1
$$

It is also a unit vector

If we only use real amplitudes α, β
length of $\quad,(\alpha, \beta)$

$$
=\sqrt{\alpha^{2}+\beta^{2}}=1
$$

$$
\begin{aligned}
"|0\rangle "= & 1 \text { ample. on } 10\rangle^{\prime \prime}= \\
& 0 \text { ample. on }|12\rangle^{\prime \prime}
\end{aligned} \quad\binom{1}{0}
$$

$\{(0),|1\rangle\}$ forms an orthonormal basis for \mathbb{R}^{2}
Any quit can be written as $\alpha|0\rangle+\beta|1\rangle$ where $|\alpha|^{2}+|\beta|^{2}=1$
Let

$$
\alpha\binom{1}{0}+\beta\binom{0}{1}=\binom{\alpha}{\beta}=" \psi "=\text { unit vector }
$$

How can we describe α, β in terms of ψ ?

$$
\begin{aligned}
& \alpha=\text { "Projection of " } \psi \text { " on }|0\rangle \text { " }=\langle " \psi ", " \mid 0\rangle "\rangle \\
& \left.\beta=\text { "Projection of " } \psi \text { " on }|1\rangle^{\prime \prime}=\langle " \psi ", " \mid 1\rangle \text { " }\right\rangle
\end{aligned}
$$

If $u, v \in \mathbb{R}^{h}$, then

$$
\begin{aligned}
& \langle u, v\rangle=\text { Inner product of } u \text { and } v=\sum_{i=1}^{n} u_{i} v_{i}=\left(\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=u^{\top} v \\
& \|u\|=\text { length of } u=\sqrt{\langle u, u\rangle}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}} \leftarrow \text { if " } \psi^{\prime \prime}=\binom{\alpha}{\beta} \\
& \|\psi\|=\sqrt{\alpha^{2}+\beta^{2}}
\end{aligned}
$$

What happens with complex vectors $u, v \in \mathbb{C}^{n}$?

$$
\begin{aligned}
& \langle u, v\rangle=\sum_{i=1}^{n} \bar{u}_{i} v_{i}=\left(\begin{array}{lll}
u_{1} & \cdots & \bar{u}_{n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=u^{+} v \quad \text { dagger or conjugate } \\
& \text { transpose of } u \\
& \|u\|=\text { length }=\sqrt{\langle u, u\rangle}=\sqrt{\sum_{i=1}^{n} \overline{u_{i}} u_{i}}=\sqrt{\sum\left|u_{i}\right|^{2}}
\end{aligned}
$$

So, if " ψ " $=\binom{\alpha}{\beta} \in \mathbb{C}^{2}$, then $\|\psi\|=\sqrt{|\alpha|^{2}+|\beta|^{2}}$
Also, $\{|0\rangle,|1\rangle\}$ is an orthonormal basis for \mathbb{C}^{2}
so, $\alpha=\langle\psi \psi ", " 10\rangle\rangle$ and $\beta=\langle " \Psi ", " \mid 1\rangle "\rangle$

- $|\psi\rangle=$ column vector egg. $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
1.) is called a ket
- $\langle\psi|=\underbrace{\text { conjugate transpose of } \psi}_{\psi^{+} \text {row vector }}=\left(\bar{\psi}_{1} \ldots \bar{\psi}_{n}\right)$
$<\cdot l$ is called a bra
- Inner Product of $|\psi\rangle,|\sigma\rangle$

$$
=\left(\bar{\psi}, \cdots . \overline{\psi_{n}}\right)\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{n}
\end{array}\right)=\langle\psi| \cdot|\sigma\rangle=\langle\psi \mid \sigma\rangle
$$

Given a qubit $|\psi\rangle$ and orthonormal basis $\{|0\rangle,|1\rangle\}$

$$
|\psi\rangle=\frac{\langle 0 \mid \psi\rangle}{\text { scalar }}|0\rangle+\frac{\langle 1 \mid \psi\rangle}{\text { scalar }}|1\rangle
$$

Can do the same for any basis $\left\{\left|b_{0}\right\rangle,\left(b_{1}\right)\right\}$

$$
|\psi\rangle=\left\langle b_{0} \mid \psi\right\rangle\left|b_{0}\right\rangle+\left\langle b_{1} \mid \psi\right\rangle\left|b_{1}\right\rangle
$$

Example

$$
\begin{aligned}
\binom{1 / \sqrt{2}}{1 / \sqrt{2}} & =\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& ="|+\rangle " \\
\binom{1 / \sqrt{2}}{-1 / \sqrt{2}} & =\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle="|-\rangle " \\
|0\rangle & =\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}} \\
|1\rangle & =\frac{1}{\sqrt{2}}|+\rangle-\frac{1}{\sqrt{2}}|-\rangle
\end{aligned}
$$

Exercise How do you express $\langle\psi|$ in terms of Ret notation?
NEXT LECTURE : Born's rule for measurement in a different basis \& more

