
th
14LECTURE Nes, 2023

-

#T# ramenQuantarithms

#ay RSA O Show's Factoring Algorithm

RECAP Period-finding over integers-

f : -> COLORS

I(a)oly)

↑ = N

zal: Given query access to f , compute the period p

time Truncate the list to Q = N elements

Ten
,

we saw a quantum subroutine that gives us "clues" about the period

key insight behind this was that Quantum Fourier Transform can extract
-

clues" about the period

How did this work ?

· if the function mod Q was exactly periodic : p divides Q

1
L

then the quantum subroutine outputs a random spie ofioateer
Eg. SR

,
IOR

,
ZOR

,
3R

,
....

35
,
49 , ...

--

This list and Q is known to the algorithm but not p
But if we take GCD of all these numbers we can figure
out R and hence p with high probability

· if the function is almost-periodic :

p does not divide Q

1 0101y)

Then the last piece may not be complete
But the length of each piece is p/NCd ,

so this last piece
is much smaller than the length of the array ⑪

Because of this errors can be handled and the subroutine goives
US

LIR] where I is random and R = &
P

↑

Lx1 = Nearest integer to a real number x

If we run this many times

we get b
,

= (1 , 97 ,
32 = (1297 , = (13)

E
. g .

b
,

= l+ 2
=

12-
How do we find p ?

Let us divide everything by Q & assume that the algorithm outputs rational numbers

Both known -

to algorithm
-

Them I = I where 191- = li is close to the rational output of
E

the algorithm
-

X IPictorially -
O j

But there are infinitely many such rationals ! How do we find the one we are looking for ?

Note The rational we are looking for has a small denominator p=-

How many such rationals are there ? Just one !

&im Any two fractions with denominator -I Must be at least I apart

y ? - E) = t
So

. I is the unique fraction with denominator = a that is
, a

close to

the known ratio
This can be found using a classical method called 'continued fractions'

②

We will explain continued fractions with an example

E
.g.

0 . 25001 =

--

-3
z

This converges very quickly to the correct rational and we can find I
But we still don't know whether the actual ratio came from I or I or

-

One can solve this by a similar trick we saw before

In particular , it turns out that :

The least common multiple of pi's is the right value with high probability

Now
,

on to the main topic : How do we use perioding finding to factor integers ?

First
,
let us start with some motivation about why we want to factor large integers

The motivation is the RSA Cryptosystem

#crosystem Fotherwidelyed cryptosystemIfie-Helleventedin 1978
This was invented by Rivest , Shamir & Adleman in 1977

Widely used in practice and enables public-key encryption , digital signatures ,....

How does it work ?

suppose you want to send a secret message (suck as a credit card number) to Amazon

Now you and Amazon haven't agreed to a secret key ,
so how can you do it so that

no adversary can decode your message but Amazon can

③

· Amazon generates two large prime numbers p & a ,
set N = pq

I
random prime number e =[1

, (p-1)(9-113

↳
computes an integer d such that de=1 God (p-1)(9-1)

· Amazon publishes public key = ce
,
N for everyone to see

and keeps secret key = d hidden

· Now
, if you want to send a message x & [1,

N-15 to AMAZOR

your browser sends i
= x

*
mod N Ce

,
N) is public

· To decode
,
Amazon computes in = (x2)" mod N

= xde mod N

=x mod N by Fermat's Little Theorem

Now Amazon knows your credit card number x

· Why can't an adversary decode mn as well ?

* They don't have d !

But if they could factor N
=

p .

g they could compute it and break cryptosystems

This is why factoring is such an important problem

toring Given N =

p .g where p and 9 are primes 3- if we can solve this case
,

we can also factor other

find p , g numbers as well

#

Algorithm : Check all numbers 1
,

2
,

...
*N to see if they divide N

time = /N = 2

'* where 10g N= #bits in N

If N = 1024
,

this is 22 which world take billions of years

seebasedArithm takes time 240gN)"s which is still impractical unless you
have huge amount of resources

But if we have 2040-bit integers , everything we have is impractical even after 50 years

of efforts !

④

SFaAlgorithm - One of the most important developments in quantum computing

Invented by Peter Show in 1993 taking inspiration from Simon's Algorithm

#IDEA Reduce to period-finding/order-finding over integers to get "clues" about factors

Use classical post-processing to extract factors

key point to remember is that in period finding , we are givet query access

to a function but we can implement this query access very efficiently for
this problem of order finding

Reduciactorto finding Input : N

· Pick a random number a =[1 ,
2

,
....
N-13

1
If GCDCa ,

N) #==> We have found a factor (although this is very unlikely)
L
If GCD(a ,

N) =

1 = compute the order of x mod N
,
call it

by invoking the order-finding subroutine

r

⑳ Finding Find smallest integer v s.
t .

a = 1 mod N

Basically ,
the function f(x) = a

*
od N is periodic

1 = amodN

...
- a mod N

:
e

... = 40d N

1 = a mod N

· If v is odd
, we repeat the above

· Otherwise
,

v is even & x-1 =

0 modN

=)) = 0 mod N

= b

If x
42

+ 1 & xY2- 1 are multiples of N , repeat again

Otherwise
, we get lucky since ab = h .N= hpq

Since a
,
b are not multiples of N , computing GCD(a ,N) or GCD(d

,
N)

will give a nontrivial divisor of N

⑤

Needs OClog NI gates

How far away is Show's Algorithm ?

Practically , for factoring 2048 bit number
,

we need 4096 ideal qubits
which needs 20 million noisy qubits with overhead for error correction

Total time = & hours

IBM/Google/etc .
have a roadmap to 1 million qubits by 2030

What will replace RSA ?

Diffie-Hellman ? Also
,
broken by Show's algorithm

which can de generalized to any abelian group

NIST (National Institute for Standards & Technology) just concluded a

multi-year competition to find a post-quantum cryptosystem to replace RSA

↑
you don't have a quantum computer
but your adversary does

The winners are
....

1
. Crystals - KUBER -> For encryption

2
. Crystals - Dilithium

3. FALCON 3 -> For digital signatures
4

.
SPHINCS

First three are based on lattices
,
where the goal is to find short/close vectors

in a high dimensional lattice

It is believed that short/close vector problems are hard even for quantum computers

The evidence for this is not conclusive o it will take time to build confidence
in these new cryptosystems

In fact ,
SPHINCS+

,
which was based on elliptic curves is already broken by

classical computers !

K projects

& When we resume , Quantum Search with Grover's Algorithm ⑥

