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Last time we saw that GFT can be implemented with OCKY 1 and 2 qubit gates

#cise (ins) Give a circuit implementing QFT4
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Our motivation for considering QFT was the following

In Simon's Algorithm ,
we used a quantum subvortine that gave us linear equations

describing our period

We will use QFT in a similar way to design a quantum subroutine that will

give us a "due" about periods over integers modulo N

In the next lecture
.

We will use these clues to design an algorithm for factoring

Redfineover TLN f : Yr-> COLORS Er = integers modulo N

One can think of f as an array of length N Y = 20 ,
1 , 2

,
33
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We will assume that we have "black-box" or "query access" to f

Wg(x)y>
= 1x)1y0f(x) where y has m-qubits

⑪



Note that in Shor's algorithm we will be able to implement this black box unitary ourselves

We will assume that I is periodic

periodic means that f(x) = f(x+p) for all x c r where p FO and divides N

↑

addition mod N

50
. f(0) = f(p) = f(zp) =

.. ..

= f(kp) where k= I is integer
P

f(1) = f(p+1) = f(2p+1) =

....

=

f(kp+ 1) and so on
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Moreover
,
the values f(0) ..--f(p-1) are assumed to be distinct

compared to simon's problem ,
there is a lot of periodicity here and we will see it

Let's try to design a quantum subroutine that will give us a "clue" about the periods

Mantrautine (similar to Simon's algorithm)

For controlling the errors later
. We shall need P/N so we first do the following

Pick a number G = 2 such that Q-(N2, 2N2) and extend f : Ya- COLORS

f on this bigger space man only be Almost - Periodic but we will able to handle it

periodic f(x) = f(x + p)
= f(x + 2p) =

- ..

= f(x + kp) if x + kp < Q

~Esly /BY Q = 12

p
= 4

The array does not wrap perfectly

Moreover
,
the values f(0) ..--f(p-1) are assumed to be distinct
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& Measure the COLOR

③ Apply GFT to the remaining qubits and measure them
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State at time & = (QFT 10 .... 0 ) * 10)
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*&

as well since
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State at time & =

I *** (xK

State at time ③ is obtained by Measuring the COLOR

Suppose we measure R
.
then the state only contains amplitudes on terms

where R occurs
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Q if f on bigger space is
Let k = # times R appears =

LP! (B!** I still periodic . K = Q

P

Then
,
the state collapses to

#((x) + 1x + 4) +

. . .

+ (x+ kp)) * /R) where f(x)= R

+ip)aI 1x

ignore what happens to this
from now on

Applying the GFTo the state of the first & qubits at time & is

③
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What's going on with this state ?

Let's first start with the easy case where f is also periodic on the bigger space
This happens when p divides &

Nowy
,
the question is

· Which basis states have layoe amplitudes ? - Constructive Interference

· Which ones have small or zero amplitudes ? - Destructive Interference

Let us look at (woPs
-

3by
Sum of roots of unity Wa = w This is w

1 +w + w+ .. -

+ wk- 1

where r =bp . mod Q

& · 2

· If v = 0
,

ye sum the trivial root K times · * Wa

* ·Q
constructive interference if is integer

· woa-

If ~Or since Itwi+w+--- tw = 0 for Some Nt"-root of unity
and since we go around the circle an integer # of times

=> the sum evaluates to 0
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Destructive interference if is not an integer b = 6 .

z

Overall
,

we get that the state at time & is

** I ] liw
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-> an integer

If we measure it
,

we get a random integer b that is a multiple ofD
i

. e . We get b =

18 Where &=40 .... p-13 is uniformly choselv
and I is an integer , say R

# tel The algorithm knows & because we picked it
and b which is the outcome of the measurement

But it does not know top e
.g . if b =

3 .

G or b = 6

If we do this several times
,

we get random samples

2
,
R

, lzR , IzR , .....
e. g . Say R

=

7

14
,
49

, .....

If I; and Is are coprime ,
i

.
e

. Gcd (hi , 1j) =1

=> gcd(l ; R , 1jk) = R The largest common factor
between iR and IjR is R

Of course
,
the algorithm does not know ei's but if we do this many times

and take jod of all pairs and say take the minimum ,
we will succeed with

high probability

MHard case When is not an integer which is what happens when function is almost
-

~ periodic

Previously will
(when ⑤ was e

· · su roots
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Now
,

we will mostly see constructive interference if K = nearest-integer /multiple of ()
(when I is

not an integer) and destructive interference if KF nearest-integer /multiple of ()

Basically ,
constructive interference occurs because :

we sum over complex values e'2
* 3

where

E = = 0 so the values are close to 1
⑤



destructive interference occurs because again the values almost cancel out

So 71b"Wi"w
-

: = al

If we plot /b) it now looks like (this is what matters for measurement)

Inh
- 7

·7) T ) - notation means nearest integer

multiple

If we measure
,

with high probability we will output an integer d
,

=

L4g1

Final thing that remains to do : if we get b
,

= (1) ,
12 =(1287 ,y = (13)

how do we find p
? Next time

#TTIME] + RSA Cryptosystem and Show's Factoring Algorithm

⑥


