LECTURE 13 October $3^{\text {rd }}, 2023$

PART II Fundamental Quantum Algorithms
Today Period finding over \mathbb{Z}_{N}
RECAP Quantum Fourier Transform for $N=2^{\text {n }}$

$$
|0\rangle \xrightarrow{Q F T_{N}} \frac{1}{\sqrt{N}} \sum_{s=0}^{N-1}|s\rangle
$$

11) $\longrightarrow \frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} \omega_{N}^{s}|s\rangle$
$127 \longrightarrow \frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} \omega_{N}^{2 s}|s\rangle$
$(N-1)^{\text {st }} \underset{\text { root }}{\text { Unity }}$ of $|x\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{s=0}^{N-1} \omega_{N}^{x s}|s\rangle$

Last time we saw that $Q F T_{N}$ can be implemented with $O\left(n^{2}\right) 1$ and 2 quit gates
Exercise (in-class) Give a circuit implementing $Q F T_{4}$

Our motivation for considering QFT was the following
In Simon's Algorithm, we used a quantum subroutine that gave us linear equations describing our period

We will use QFT in a similar way to design a quantum subroutine that will give us a"clue" about periods over integers modulo N

In the next lecture, we will use these clues to design an algorithm for factoring
Period finding over \mathbb{Z}_{N} $f: \mathbb{Z}_{N} \longrightarrow$ COLORS $\mathbb{Z}_{N}=$ integers modulo N

One can think of f as an array of length N

$$
\begin{aligned}
\mathbb{Z}_{4} & =\{0,1,2,3\} \\
0^{2} & =0 \quad 2^{2}=0 \\
1^{2} & =1 \quad 3^{2}=1
\end{aligned}
$$

We will assume that we have "black-box" or "query access" to f

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle \quad \text { where } y \text { has } m \text {-quits }
$$

Note that in Shoo's algorithm we will be able to implement this black-box unitary ourselves
We will assume that f is periodic
Periodic means that $f(x)=f(x+p)$ for all $x \in \mathbb{Z}_{N}$ where $p \neq 0$ and divides N \uparrow addition $\bmod \mathrm{N}$
so, $f(0)=f(p)=f(2 p)=\ldots=f(k p)$ where $k=\frac{N}{p}$ is integer
$f(1)=f(p+1)=f(2 p+1)=\ldots=f(k p+1)$ and so on
$\xrightarrow{\text { E.g }} \underset{P}{\underset{R|G| B|Y| R|G| B|Y| R|G| B|Y|}{\rightleftarrows \leftarrow}}$

$$
\begin{aligned}
N & =12 \\
& =4
\end{aligned}
$$

Moreover, the values $f(0), \ldots f(p-1)$ are assumed to be distinct

Compared to Simon's problem, there is a lot of periodicity here and we will see it
Let's try to design a quantum subroutine that will give us a "clue" about the period s
Quantum Subroutine (similar to Simon's algorithm)
For controlling the errors later, we shall need $p \ll \sqrt{N}$ so we first do the following Pick a number $Q=2^{l}$ such that $Q \in\left(N^{2}, 2 N^{2}\right]$ and extend $f: \mathbb{Z}_{Q} \rightarrow$ cOLORS f on this bigger space mas only, be Almost-Periodic but we will able to handle it

Almost-periodic $f(x)=f(x+p)=f(x+2 p)=\ldots=f(x+k p)$ if $x+k p<Q$

$$
\begin{aligned}
& \text { Ecg. } \quad \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline R & G & B & Y & R & G & B & Y & R & G & B \\
\hline
\end{array} \quad Q=12 \\
& p=4
\end{aligned}
$$

The array does not wrap perfectly
Moreover, the values $f(0), \ldots f(p-1)$ are assumed to be distinct
(1) Prepare the state $\frac{1}{\sqrt{Q}} \sum_{x \in \mathbb{Z}_{Q}}|x\rangle\left|0^{m}\right\rangle \frac{\text { Apply }}{U_{f}} \frac{1}{\sqrt{Q}} \sum_{x \in \mathbb{Z}_{Q}}|x\rangle \underbrace{|f(x)\rangle}_{\text {COLOR }}$
(2) Measure the COLOR
(3) Apply QFT to the remaining quoits and measure them

State at time (1) $=\left(Q F T_{Q}|0 \cdots 0\rangle\right) \otimes|0\rangle^{\otimes m}$

$$
\left.\left.=\frac{1}{\sqrt{Q}} \sum_{x \in z_{Q}}|x\rangle \otimes \right\rvert\, 0\right)^{\otimes m}
$$

applied $H^{\otimes l}$ as well since

$$
H^{\Delta l}|0 \cdots 0\rangle=\frac{1}{\sqrt{Q}} \sum_{x \in \mathbb{Z}_{Q}}|x\rangle
$$

State at time (2) $=\frac{1}{\sqrt{Q}} \sum_{x \in \mathbb{Z}_{Q}}|x\rangle|f(x)\rangle$

State at time (3) is obtained by measuring the cOLOR

Suppose we measure R, then the state only contains amplitudes on terms where R occurs

Let $k=\#$ times R appears $=\left\lfloor\frac{Q}{p}\right\rfloor$ or $\left\lfloor\frac{Q}{p}\right\rfloor+1 \quad \left\lvert\, \begin{aligned} & \text { if } f \text { on bigger space is } \\ & \text { still periodic, } k=\frac{Q}{P}\end{aligned}\right.$

Then, the state collapses to

$$
\begin{aligned}
& \frac{1}{\sqrt{k}}(|x\rangle+|x+p\rangle+\ldots+|x+k p\rangle) \otimes|R\rangle \text { where } f(x)=R \\
= & \left(\frac{1}{\sqrt{k}} \sum_{j=0}^{k}|x+j p\rangle\right) \otimes \underbrace{|R\rangle}_{\begin{array}{c}
\text { ignore what happens to this } \\
\text { from now on }
\end{array}}
\end{aligned}
$$

Applying the QFT, the state of the first l quits at time (4) is

$$
\begin{aligned}
& \frac{1}{\sqrt{K}} \sum_{j=0}^{k-1} \frac{1}{\sqrt{Q}} \sum_{b=0}^{Q-1} \omega_{Q}^{b(x+j p)}|b\rangle
\end{aligned} \quad|x\rangle \xrightarrow{\text { RECALL }} \begin{aligned}
& \text { QFTQ } \\
& =\frac{1}{\sqrt{Q}} \sum_{b=0}^{Q-1} \omega^{b x}|b\rangle \\
& =\frac{1}{\sqrt{K Q}} \sum_{b=0}^{Q-1} \sum_{j=0}^{k-1} \omega_{Q}^{b(x+j p)}|b\rangle \\
& \sum_{b=0}^{Q-1} \omega_{Q}^{b x}\left(\sum_{j=0}^{k-1} \omega_{Q}^{b j p}\right)|b\rangle
\end{aligned} \quad \text { where } \omega_{Q}=e^{2 \pi i / Q}
$$

What's going on with this state?
Let's first start with the easy case where f is also periodic on the bigger space This happens when p divides Q

Now, the question is

- Which basis states have large amplitudes? \& Constructive Interference
- Which ones have small or zero amplitudes? \&Destructive Interference Let us look at $\sum_{j=0}^{k-1}\left(\omega_{Q}^{b p}\right)^{j}$

Sum of roots of unity $\omega_{Q}^{b p}=\omega \leftarrow$ This is ω_{Q}^{r}
$1+\omega+\omega+\ldots+\omega^{k-1}$

$$
1+\omega+\omega+\ldots+\omega^{k-1} \quad \text { where } r=b p \cdot \bmod Q
$$

- If $r=0$, we sum the trivial root k times

Constructive interference if $\frac{b p}{Q}$ is integer

> If $r \neq 0$, since $1+\omega_{N}+\omega_{N}^{2}+\cdots+\omega_{N}^{N-1}=0$ for some $N^{t h}$. root of unity and since we go around the circle an integer \# of times
> \Rightarrow the sum evaluates to 0

Destructive interference if $\frac{b p}{Q}$ is not an integer

$$
\begin{aligned}
& \frac{b_{p}}{Q} \in Z \\
& b=\frac{Q}{p} \cdot Z
\end{aligned}
$$

Overall, we get that the state at time (4) is

$$
\begin{aligned}
& \frac{1}{\sqrt{K Q}} \sum_{b=0}^{Q-1} \omega_{Q}^{b x} \underbrace{\left(\sum_{j=0}^{K-1} \omega_{Q}^{b j \cdot p}\right)}_{=k \text { if }}|b\rangle \\
= & \sqrt{\frac{k}{Q}}\left(\sum_{l=0}^{p-1} \omega_{Q}^{l \cdot \frac{Q}{p} \cdot x}\left|\ell \frac{Q}{p}\right\rangle\right)
\end{aligned}
$$

If we measure it, we get a random integer b that is a multiple of $\frac{Q}{p}$
i.e, we get $b=l \frac{Q}{p}$ where $l \in\{0, \ldots p-1\}$ is uniformly chosen

$$
\text { and } \frac{Q}{P} \text { is an integer, say } R
$$

Note The algorithm knows Q because we picked it and b which is the outcome of the measurement

But it does not know l or $P \quad$ eng. if $b=3 \cdot \frac{Q}{17}$ or $b=6 \cdot \frac{Q}{34}$

If we do this several times, we get random samples

$$
\begin{array}{ll}
\ell, R, l_{2} R, l_{3} R, \ldots . & \text { e.g. } \\
\text { If } R=7 \\
\Rightarrow \operatorname{lay} \text { and } l_{j} \text { are coprime, i.e. } g(d)\left(l_{i}, l_{j}\right)=1 & 14,49, \ldots \\
\Rightarrow \operatorname{gcd}\left(l_{i} R, l_{j} R\right)=R & \begin{array}{l}
\text { The largest common factor } \\
\text { between } l_{i} R \text { and } l_{j} R \text { is } R
\end{array}
\end{array}
$$

Of course, the algorithm does not know l_{i} 's but if we do this many times. and take god of all pairs and say take the minimum, we will succeed with high probability

Hard case When $\frac{Q}{p}$ is not an integer which is what happens when function is almost - periodic

$$
\begin{aligned}
& \text { Now, we will mostly see constructive interference if } k=\text { nearest-integer (multiple of } \frac{Q}{\bar{P}} \text {) } \\
& \text { (when } \frac{Q}{P} \text { is } \\
& \text { not an integer) } \quad \text { and destructive interference if } k \neq \text { nearest-integer (multiple of } \frac{Q}{\bar{P}} \text {) }
\end{aligned}
$$

Basically, constructive interference occurs because:

we sum over complex values $e^{i 2 \pi \varepsilon}$ where $\varepsilon \approx 0$ so the values are close to 1
destructive interference occurs because again the values almost cancel out

$$
\frac{1}{\sqrt{k Q}} \sum_{b=0}^{Q-1} \underbrace{\omega_{Q}^{b x}\left(\sum_{j=0}^{k-1} \omega_{Q}^{b j p}\right)}_{:=\alpha_{b}}|b\rangle
$$

If we plot $\left|\alpha_{b}\right|$ it now looks like (this is what matters for measurement)

If we measure, with high probability we will output an integer $b_{1}=\left\lfloor l_{1} \frac{Q}{P}\right\rfloor$

Final thing that remains to do: if we get $b_{1}=\left\lfloor l_{1} \frac{Q}{P}\right\rceil, b_{2}=\left\lfloor l_{2} \frac{Q}{\partial}\right\rceil, b_{3}=\left\lfloor l_{3} \frac{Q}{P}\right\rceil$ how do we find p ? Next time

NEXT TIME + RSA Cryptosystem and Shoo's Factoring Algorithm

