LECTURE 12 September 28th, 2023

PART II Fundamental Quantum Algorithms

Today Simon's Algorithm (wrapup) Quantum Fourier Transform

RECAP Given black-box access to f that is L-periodic, determine L E {0,13^h

Black-box access: $|\chi\rangle|_{y} = \bigcup_{f} |\chi\rangle|_{y} = \int_{m=h-1}^{\infty} |\chi\rangle|_{m=h-1}$

L-periodic: f(x) = f(y) iff $x \oplus y = L \implies pairs(x, x+L)$ get a distinct color

(1.4)ⁿ classical vs 4n quantum

Key idea Use quantum subroutine to get random linear equations in bit representation of L Quantum Subroutine (i) Prepare the state $\frac{1}{\sqrt{2n}} \lesssim \frac{1}{\sqrt{2}} \frac{1}{$

> Suppose we get $s^{(1)}, \dots, s^{(T)} \in \{0, 1\}^n$, then $\begin{bmatrix} -s^{(1)}, \dots, s^{(T)} \in \{0, 1\}^n, \text{ then } \\ -s^{(1)}, \dots, s^{(T)} \end{bmatrix} = 0 \qquad e.g. \qquad L_1 \oplus L_2 \oplus L_3 \oplus L_4 = 0 \\ L_2 \oplus L_3 = 0 \qquad L_2 \oplus L_3 = 0 \end{bmatrix}$

$$\begin{bmatrix} \vdots \\ -s^{(T)} \end{bmatrix} \begin{bmatrix} L_n \end{bmatrix} \qquad \begin{array}{c} L_1 \oplus L_2 &= 0 \\ L_3 \oplus L_4 &= 0 \end{bmatrix}$$

• At least 2 solutions 0, L and others

• Each new s if it is linearly independent, reduces # solns by half

• Exactly 2 solutions if
$$s^{(v)}$$
, $S^{(T)}$ contain $n-1$ linearly independent equations

Given N, find p,q s.t. $p\cdot q = N$

Shor's algorithm uses a similar subroutine over integers mod N called ORDER FINDING

ORDER FINDING: $f(x) = a^{x} \mod N$ where a is uniform random number coprime to N find L (dividing N) S.t. $f(x) = f(x+L) = f(x+2L) = f(x+3L) \cdots$ Main differences with Simon's problem:

- 1) Arithmetic mod N where N is a large number
- ② No promise that L divides N, so need some results from number theory to deal with it
- 3 We can build the black-box ourselves This is what makes it practical!
- The algorithm for order finding is similar to Simon's algorithm but we need an analog of H^{®n} that works mod N

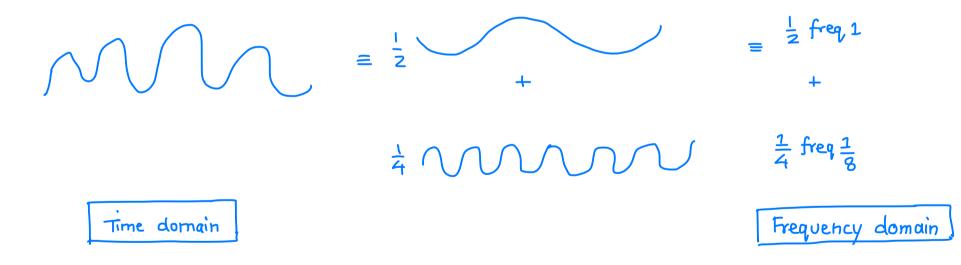
This is the Quantum Fourier Transform which we now introduce

Quantum Fourier Transform

Let us first talk about the classical discrete tourier Transform

Useful in recovering periodic structure in data

E.g. continuous fourier transform allows



Discrete Fourier Transform (DFT)

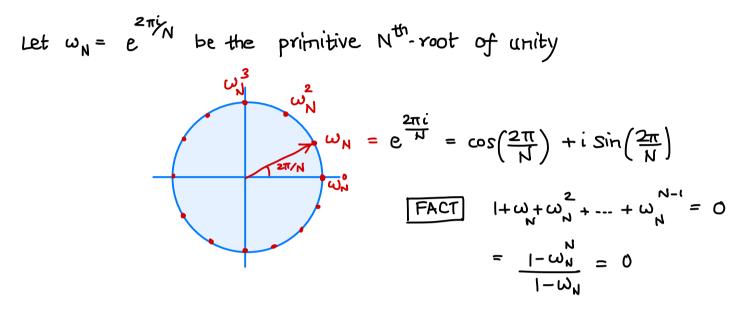
Given
$$f: \mathbb{Z}_{N} \to \mathbb{C}$$

$$\begin{bmatrix} 10^{\circ} \\ \vdots \\ \vdots \\ \vdots \\ 1N-1 & \end{bmatrix}^{\circ} = \sum_{s=0}^{N-1} f(s) |s\rangle = \sum_{s=0}^{N-1} \hat{f}(s) |v_{s}\rangle$$
where $\{|v_{0}\rangle, \dots, |v_{N-1}\rangle\}$ is
a different basis called
the \mathbb{Z}_{N} -Fourier basis and
 $\hat{f}(i)$ are the Fourier coefficients
"TIME" domain
Standard basis
Fourier basis

(Inverse) DFT matrix
$$DFT_N = \sum_{s=0}^{N-1} |\upsilon_s X_s| = \begin{bmatrix} | & | & | \\ |\upsilon_0 \rangle |\upsilon_1 \rangle \dots |\upsilon_{N-1} \rangle \\ | & | & | \end{bmatrix}$$
 Unitary Matrix $DFT_N^{-1} = DFT_N^+$

$$E.g. N=2 DFT = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H$$

For general N, we need complex numbers



Plotting Real parts of v_s the graph looks like a discrete cosine wave $Re(v_s)$ $rac{1}{N-1} \times$ S=0 S=1S=2

$$E_{q} (N=4) \quad DFT_{q} = \frac{1}{\sqrt{4}} \begin{bmatrix} \omega_{q}^{\circ} & \omega_{q}^{\circ} & \omega_{q}^{\circ} & \omega_{q}^{\circ} \\ \omega_{q}^{\circ} & \omega_{q}^{\circ} & \omega_{q}^{2} & \omega_{q}^{3} \\ \omega_{q}^{\circ} & \omega_{q}^{2} & \omega_{q}^{4} & \omega_{q}^{6} \\ \omega_{q}^{\circ} & \omega_{q}^{3} & \omega_{q}^{6} & \omega_{q}^{9} \end{bmatrix} \quad an \text{ express mod } 4$$

$$Since \quad \omega_{q}^{4} = 1$$

$$DFT_{N}^{-1} = Conjugate \text{ Transpose of } DFT_{q}$$

$$= \text{ put negative Signs in the exponent}$$

One can compute discrete fourier transform of any vector in ~ NlogN time classically

However, since DFT, is a unitary matrix, one can applying it to a quantum state

NOTE The coefficients in standard and Fourier basis are encoded as amplitudes unlike the classical case where one can write the N coeffectients on a piece of paper

The advantage is that one can IMPLEMENT DFT, for N=2ⁿ with

O(2ⁿ.n) time classically, so exponential savings but here we get a quantum state

Let's see how to do this by example, Say N = 16We want to implement $|x\rangle \xrightarrow{DFT_{16}} \frac{1}{\sqrt{16}} \sum_{s=0}^{N-1} \omega_{16}^{SX} |s\rangle$ where $\omega_{16} = e^{\frac{2\pi i}{16}} = \omega$

 $\mathsf{DFT}_{\mathsf{I6}}(x) = \frac{1}{4} \left(10000 + \omega^{2} 10000 + \omega^{2} 10000 + \omega^{3} 10001 + \dots + \omega^{15} 11001 \right)$

Is this state entangled? NO!

$$= \left(\underbrace{\frac{10}{\sqrt{2}} + \omega^{8^{x}} (1)}_{\sqrt{2}}\right) \otimes \left(\underbrace{\frac{10}{\sqrt{2}} + \omega^{4^{x}} (1)}_{\sqrt{2}}\right) \otimes \left(\underbrace{\frac{10}{\sqrt{2}} + \omega^{2^{x}} (1)}_{\sqrt{2}}\right) \otimes \left(\underbrace{\frac{10}{\sqrt{2}} +$$

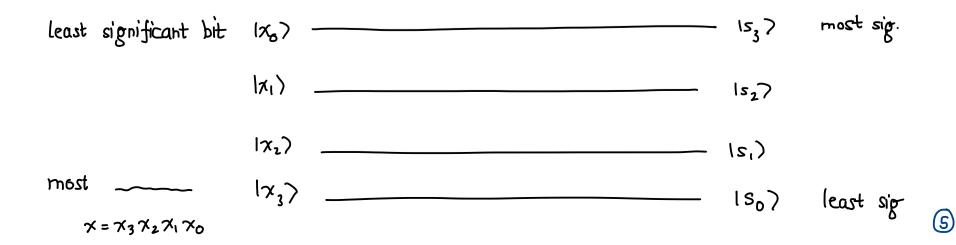
Compare this to the following step in Simon's algorithm:

$$H^{\otimes n}(x) = 1 + 2 \otimes 1 - 2 \otimes 1 + 2 \otimes ...$$
 output qubit i depends only on input qubit x_i
1 $1_{if x_3=0}$
if $x_2=1$

For DFT, each output qubit depends on all n-input qubits

We will do the transform qubit - by - qubit

It will be very convenient to reverse the order



One can do 1 SWAP grates to reverse the order at the end

To do the 0th wire, we need to get $\frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} = \frac{10}{\sqrt{2}}$ Seems like this depends on all $\sqrt{2}$

Notice,
$$\omega^8 = \omega_{16}^8 = (-1)$$

so, $\omega^{8x} = (-1)^{x}$ and it only depends on whether x is even or odd, i.e. on x_{0}

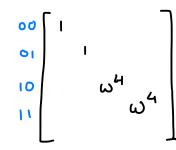
So, we want
$$\frac{10) + (-1)^{x_0} 117}{\sqrt{2}} = H 1x_0 ?$$

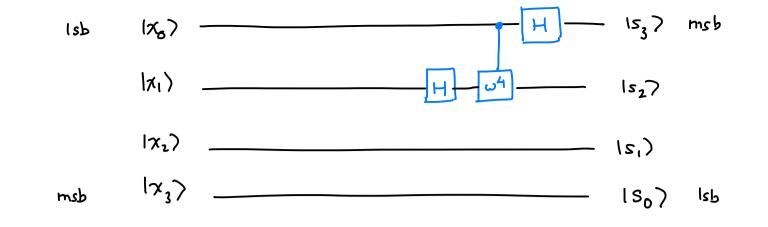
To do the 1st wire, we need to get $\frac{107 + \omega^{4\times 117}}{\sqrt{2}}$ = Seems like this depends on all $\sqrt{2}$. A qubits of x again

$$\omega^4 = i$$
, so $\omega^{4\chi} = i^{\chi} \leftarrow \text{only depends on } \chi \mod 4$
i.e. χ_0 and χ_1

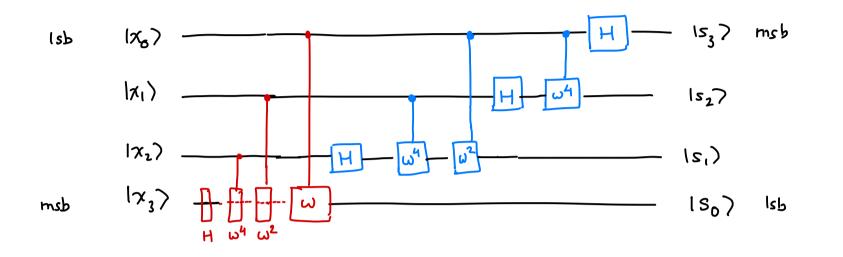
so, the 11> state should pick up phase (-1) if x₁=1 ← Hadamard should also pick up phase ω⁴ if x₀=1

"controlled -
$$\omega^4$$
" gate, control qubit = π_0





Rest is similar, in the end we have



Total gates:
$$1+2+3+4+--+n = O(n^2)$$

Final Remarks For general n, say n = 1000 ω_{2n} is the controlled 2^{1000} -th root of unity phase shift gate

We cannot build this accurately in practice

In general, not realistic for 2^k root of unity for k > 30

Luckily, it's not a problem!

FACT Suppose we delete all gates where $k \ge \log(\frac{n}{\epsilon})$ E.g. k=30 $\epsilon = 1.1/\epsilon$ Then, the resulting circuit

• "E approximates" $DFT_N \rightarrow success probability of Shor's algorithm only goes down by <math>\varepsilon$

· remaining gates can be built since they have large phases

