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Qiskit Demo & Simons' Algorithm
-

RECAP Last time we looked at Deutsch's algorithm :

-

Given f : 20 , 13-90, 13
,
decide if f is constant or balanced

Blackbox access to I xx1y-5)- xx1yf(x)
(mystery unitary g)

can solve it with one quantum query while two classical queries are needed

⑭idea Create the State 1-1(10) 10) + El-Kf (1) by making a superposition
query !

This gives a 2x speedup !

Today we will look at Simons' algorithm which gives an exponential advantage in
the number of queries !!

This is still in the black-box model and the problem is still mostly of theoretical
interest

,
it directly inspired Show's factoring algorithm !

Ns'Problem Here the mystery black-box function maps f : 90 ,
13" - 90 , 13

"

It is useful to think of the output of as a color assigned to
a bit-string

Eg. (for n
= 3)-f(x)

000 RED

001 YELLOW

010 BLUE

011 GREEN

100 YELLOW

10
I
GREEN

101 RED

-

11I BLUE

&al promfo is assumed to be "L-periodic" for some unknown

"Secret" string Le 20 , 13 "where LF00 .....

* x=[0 ,3"
-
f(x) = f(x+ 1)

↑ addition mod 2 ⑪



#

df(x) = f(y) if and only if & = x + L or y = x

# COLORS

In other wordsof gives the same color to (x
,
x+L) 3 = 2 -1

but gives different colors to different pairs

What is in the above example ?

Simon's problem is the followings :

Given black-box access to f that is L-periodic
,
determine L

xxy)-
----

- (x)1yf(x)
' <n L

11

What about classical algorithms ? Really hard for classical algorithms !

(In-class Exercise) What's the best classical algorithm ?

&

im Even allowing randomized algorithms= 1.4" applications of Ug

#tch Imagine L was chosen randomly and f is also a random periodic function

say we apply Up T times on x" .....
x()

· If we see two of the same color e .g .

x") and xY
,

them L
=

x + xis and we are done

· If all colors are different ,
We have ruled out that

↳ = xi) + xix) for all 1 <i < ; = T

There are atmost ?
"

such pairs ,
but 2""possibilities for L

Son > 2
"

"If there is no error B

Is there a matching classical algorithm ?

Theorem (Simon) Quantumly one only needs an queries ,
i

.
e

.
4n applications of Up-

If we repeat it so times
.

We can make [fail] = 10%

Summary 4K US 1 .4" -> Exponential quantum advantage
-

quantum classical

②



Eorithm Let us first try to evaluate of on all the inputs in superposition

107

-

1 E "
-

=
I Si 1xf(x)) = All queries evaluated
-E 2"

xE50 , 13 " in a superposition

Why ?

① ②

-(10) + !)**,a
**

= ( es * 10) "
At step 0 -

State is It
*"

07
*M I

At Step& State is UgH
*"10

**
= 1

eso, Uf/x
10 ....0

--

di i

- (x)1f(xK

Eg. (for n
= 3)
x The State at ② is
-

000

001 YELLOW -(10007/RED) + 100K& /YELLOW] +
.... )

010 BLUE

OI GREEN

100 YELLOW

10
I
GREEN

101 RED

-

11I BLUE

So, far we have applied Uf once
,
i. e.
made one quantum query

From this we willmonebeinformation and we can repeat this thei

-
Let's see how to do that !

Let's measure all the ancillas and see what the state of the first in qubits collapses to

1 E
107 - 3 !"= 3 Let's call it c*e SO , 13 "

Measurement Outcome is a COLOR

-

Recalling the rules of partial measurement

IP [measure (8]= sum of squared amplitudes where the color is

③



--
=

= 1 =
1

2-1 # COLORS

since by -periodicity there are exactly two such terms in the state

Eeso ,
in* If(x)>&

COLOR

So
, output is a uniformly random color

*

+ (x+ 1)1c)And the joint state becomes E1 /C
* )

jz

*

where x
*

and x
*
+2 are the pairs where I has value c

Eg. -(10007(RED) + 100K& /YELLOW7 +
....

+ 1101e(RED) + ..)
IP (each color) = I

joint3
and if we measure RED

-
State collapses to

=1000) /RED) + 11017* /RED)
52

B

So
.
State of the first in qubits becomes (* + E

*+ 2

This is very simple state ! Almost looks like we are done ! But are ye ?

Let us try some natural things

⑭ure with 50% chance get x
* and x

*
+ L

but can't do it twice with one copy of the state

since it's destroyed after measurement

e are er copy

but we will get a different c and the pair
associated to that - Again not helpful

#3 Unitary transformation on 148 +E1x+
Let's apply a Hadamard gate H on each qubit and see what happens !

④
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1 E " 3x =

OMeasurement outcome is a color

Let's call it c*e SO , 13 "
v

At step 8 -
the State is H

*

"((x* ) + (4 + 4)

=H*x* + 81x+2

What is H
**
IX)

?
E

. g . if (x) = 10 ..... 07

1910 ... 0) = (H10)(x(H10)) & - -- e/HIO)

1s= 1)
**

= (10) +Elk)
**

=

En I

H
*"(X

, - - x
,
Y = (Hix

,])e(Hix))0 .. - - (H1x,7) H107 = 17 =

E10+

I=(l0 + - k))e -- 0)+ Y Hi = 1- = 0-
= 1 I

d = 0
, 14
(-1)

*:S
,
+ ---

+

xnsn1
S

So
.
the state at step ③ is

it a I C- 115
+

-x*+4: isI
- (1)/

either [2
if 1. 2 = 0 God 2

0 if L . S = 1 Mod2

- sz(Il
**
is

↑

Half of all Se20 , 13 "satisfy SoL = 0 God 2

i
. e . such strings in the such

⑤



What happens if we measure this state now ?

We get a uniformly random Se90 , 13" such that S. L =0 mod 2

#ote :

All the information about x* went away !

This is one bit of information about L

For example if s =o .... 1 ... had a single 1 coordinate

we learn that particular bit of L

In general .
We get a linear equation sol = 0 mod 2 for a random s

↑
We know explicitly e

.g .

=1001110000

2 = 2
, ------4

=>
L

,
+ 24 + 25 + 2g

= 0 mod 2

We can repeat this whole quantui subroutine T times and get T linear equations

g"= = 0 -> Each equation reduces # of possible L's by E
g(2) = 0

and we can stop if there are exactly 2 solutions

: the true secret string & O

gY. = 0

If these contain n-2 linearly independent equations ,
We know exactly - Classical algorithm

such as Gaussian

# imination

.marize :
· Quantum subroutine gives us a random s satisfying s . L = 0

· Collect T such strings which gives T linear equations (mod 2)

· solve them classically

# Buildup to Show's Algorithm via Quantum Fourier Transform

⑥


