PART II Fundamental Quantum Algorithms

Today Qiskit Demo \& Simons' Algorithm
RECAP Last time we looked at Deutsch's algorithm:
Given $f:\{0,1\} \rightarrow\{0,1\}$, decide if f is constant or balanced

Can solve it with one quantum query while typo classical queries are needed Key idea Create the state $\frac{1}{\sqrt{2}}(-1)^{f(0)}|0\rangle+\frac{1}{\sqrt{2}}(-1)^{f(1)}(1)$ by making a superposition query!

This gives a $2 \times$ speedup!

Today we will look at Simons' algorithm which gives an exponential advantage in the number of queries!!

This is still in the black-box model and the problem is still mostly of theoretical interest, it directly inspired Stor's factoring algorithm?

Simons' Problem Here the mystery black-box function maps $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$

It is useful to think of the output of f as a color assigned to
a bit-string

E.8. (for $n=3$) | x | $f(x)$ | |
| :--- | :--- | :--- |
| | 000 | RED |
| | 001 | YELLOW |
| | 010 | BLUE |
| | 011 | GREEN |
| | 100 | YELLOW |
| | 101 | RED |
| | 110 | GREEN |
| | 111 | BLUE |

Special promise on $f \quad f$ is assumed to be "L-periodic" for some unknown
"secret" string $L \in\{0,1\}^{h}$ where $L \neq 00 \ldots 0$
$\forall x \in\{0,1\}^{n}, f(x)=f(x+L)$
and $f(x)=f(y)$ if and only if $y=x+L$ or $y=x$
$\left.\begin{array}{r}\text { In other words, } f \text { gives the same color to }(x, x+L) \\ \text { but gives different colors to different pairs }\end{array}\right\}^{\text {\# COLORS }}=2^{n-1}$
What is L in the above example?

Simon's problem is the following:

Given black-box access to f that is L-periodic, determine L

$$
\underset{n}{|x\rangle} \underset{\sim}{\mid y}\rangle-\underset{U_{f}}{\stackrel{|x|}{\longleftrightarrow}|y \oplus f(x)\rangle} \underset{m}{\longleftrightarrow}
$$

What about classical algorithms? Really hard for classical algorithms!
(In-class Exercise) What's the best classical algorithm?
Claim Even allowing randomized algorithms $\geq \sqrt{2^{n}}=1 \cdot 4^{n}$ applications of U_{f}.

Sketch Imagine L was chosen randomly and f is also a random L-periodic function
Say we apply $U_{f} T$ times on $x^{(1)}, \ldots, x^{(T)}$

- If we see two of the same color e.g. $x^{(i)}$ and $x^{(j)}$, then $L=x^{(i)}+x^{(0)}$ and we are done
- If all colors are different, we have ruled out that

$$
L \neq x^{(i)}+x^{(j)} \text { for all } 1 \leq i<j \leq T
$$

There are atmost T^{2} such pairs, but 2^{n-1} possibilities for L So, $T^{2} \geqslant 2^{n-1}$ if there is no error

Is there a matching classical algorithm?

Theorem (Simon) Quantumly one only needs $4 n$ queries, i.e. $4 n$ applications of U_{f} If we repeat it 50 times, we can make $\mathbb{P}[$ fail $] \leq 10^{-10}$.

The algorithm let us first try to evaluate f on all the inputs in superposition

At step (1), state is $\left.\left.1+\rangle^{\otimes n} 10\right\rangle^{\otimes m}=\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)^{\otimes n} 10\right\rangle^{\otimes m}=\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle\right) \otimes|0\rangle^{m}$ At step (2), state is $\left.U_{f}|+\rangle^{\otimes n} \mid 0\right) \left.^{\otimes m}=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle \right\rvert\, 0 \cdots \underset{m}{\stackrel{\ldots}{\longrightarrow}}$

$$
=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle|f(x)\rangle
$$

E.g. (for $n=3$)

x	$f(x)$
000	RED
001	YELLOW
010	BLUE
011	GREEN
100	YELLOW
101	RED
110	GREEN
111	BLUE

The state at (2) is
$\left.\frac{1}{\sqrt{8}}(1000) \otimes \right\rvert\,$ RED $\rangle+|001\rangle \otimes \mid$ YE SLOW $\left.\rangle+\ldots.\right)$

So, far we have applied U_{f} once, ie. made one quantum query From this we will learn one bit of information and we can repeat this then

Let's see how to do that! \qquad

Let's measure all the ancillas and see what the state of the first n quits collapses to

Recalling the rules of partial measurement,
$\mathbb{P}\left[\right.$ measure $\left.c^{\star}\right]=$ sum of squared amplitudes where the color is c^{\star}

$$
=\frac{2}{2^{n}}=\frac{1}{2^{n-1}}=\frac{1}{\# \text { COLORS }}
$$

since by L-periodicity there are exactly two such terms in the state

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
$$

So, output is a uniformly random color
And the joint state becomes $\frac{1}{=}\left|x^{*}\right\rangle\left|C^{*}\right\rangle+\frac{1}{\sqrt{2}}\left|x^{*}+L\right\rangle\left|c^{*}\right\rangle$
where x^{*} and $x^{*}+L$ are the pairs where f has value c^{*}
E.g. $\left.\quad \frac{1}{\sqrt{8}}(1000\rangle \otimes \right\rvert\,$ RED $\rangle+|001\rangle \otimes \mid$ YELLOW $\left.\rangle+\ldots .+| | 01\right\rangle \otimes \mid$ RED $\left.\rangle+\ldots\right)$

$$
\mathbb{P}[\text { each color }]=\frac{1}{4}
$$

(joint)
and if we measure RED, state collapses to

$$
\left.\left.\left.\frac{1}{\sqrt{2}} \right\rvert\, 000\right) \left.\otimes|R E D\rangle+\frac{1}{\sqrt{2}}|101\rangle \otimes \right\rvert\, \text { RED }\right\rangle
$$

So, State of the first n quits becomes $\frac{1}{\sqrt{2}}\left|x^{*}\right\rangle+\frac{1}{\sqrt{2}}\left|x^{*}+L\right\rangle$

This is very simple state ! Almost looks like we are done! But are we?

Let us try some natural things

Try 1 Measure with 50% chance get x^{\star} and $x^{*}+L$ but can't do it twice with one copy of the state since it's destroyed after measurement

Try 2 Prepare another copy
but we will get a different c^{*} and the pair associated to that \rightarrow Again not helpful

Try 3 Unitary transformation on $\frac{1}{\sqrt{2}}\left|x^{*}\right\rangle+\frac{1}{\sqrt{2}}\left|x^{*}+L\right\rangle$
Let's apply a Hadamard gate H on each quit and see what happens!

m

\} Measurement Outcome is a COLOR Let's call it $c^{*} \in\left\{O_{1} 1\right\}^{m}$

At step (3), the state is $H^{\otimes n}\left(\frac{1}{\sqrt{2}}\left|x^{4}\right\rangle+\frac{1}{\sqrt{2}}\left|x^{*}+L\right\rangle\right)$

$$
=\frac{1}{\sqrt{2}} H^{8 n}\left|x^{*}\right\rangle+\frac{1}{\sqrt{2}} H^{8 n}\left|x^{2}+L\right\rangle
$$

What is $H^{\otimes n}|x\rangle$? E.g. if $|x\rangle=|0 \cdots-0\rangle$

$$
\begin{aligned}
\left.H^{\otimes} \mid 0 \cdots 0\right) & =(H \mid 0)) \otimes(H|0\rangle) \otimes \cdots \otimes(H|0\rangle) \\
& =(H\rangle^{\otimes n}=\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)^{\otimes n}=\frac{1}{\sqrt{2}} \sum_{s \in\{0,1\}^{n}}|s\rangle
\end{aligned}
$$

So, the state at step (3) is

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n+1}}} \sum_{s \in\{0,1\}^{n}}\left((-1)^{x^{*} \cdot s}|s\rangle+\frac{1}{\sqrt{2^{n+1}}}(-1)^{\left(x^{*}+L\right) \cdot s}|s\rangle\right) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{s}(-1)^{x^{*} \cdot s}|s\rangle(\underbrace{\left.1+(-1)^{L \cdot s}\right)} \\
& \text { either } \begin{cases}2 & \text { if } L \cdot S=0 \bmod 2 \\
0 & \text { if } L \cdot S=1 \bmod 2\end{cases} \\
& =\sqrt{\frac{2}{2^{h}}} \sum_{s: S \cdot L=0}(-1)^{x * \cdot s}|s\rangle \\
& \text { Half of all } s \in\{0,1\}^{n} \text { satisfy } S \cdot L=0 \bmod 2 \\
& \text { ide. } \frac{2^{h}}{2} \text { such string } \delta \text { in the sum }
\end{aligned}
$$

What happens if we measure this state now?
We get a uniformly random $S \in\{0,1\}^{h}$ such that $S \cdot L=0 \bmod 2$
Note: All the information about x^{*} went away!!
This is one bit of information about L
For example if $s=0 \cdots 10 \cdots 0$ had a single 1 coordinate
we learn that particular bit of L
In general, we get a linear equation $S \cdot L=0 \bmod 2$ for a random s We know s explicitly e.g. $s=1001110000$ $L=L_{1} L_{2} \ldots \ldots L_{1}$

$$
\Rightarrow L_{1}+L_{4}+L_{5}+L_{6}=0 \bmod 2
$$

We can repeat this whole quantum subroutine τ times and get T linear equations

$$
\begin{aligned}
S^{(1)} \cdot L & =0 \\
S^{(2)} \cdot L & =0 \\
\vdots & \text { and we can stop if there are exactly } 2 \text { solutions } \\
S^{(7)} \cdot L & =0
\end{aligned} \quad \text { the true secret string } L \& 0
$$

If these contain $n-1$ linearly independent equations, we know L exactly \leftarrow Classical alporitiom such as Gaussian
Elimination

To summarize: - Quantum subroutine gives us a random satisfying $S \cdot L=0$

- Collect T such strings which gives T linear equations $(\bmod 2)$
- Solve them classically

NEXT TIME Buildup to Shor's Algorithm via Quantum Fourier Transform

