LECTURE 1, Aug- $22^{\text {nd }}, 2023$
What is a quit?

A bit : $\{0,1\} \longleftarrow$ two discrete values

How can we physically represent a bit?

Only way to know the state via measuring device

QM Law 1 If a "particle" can be in one of 2 basic states 10) or (1) then it can also be in a superposition state, meaning-
" α amplitude on 10\rangle, β amplitude on 11\rangle "
where α, β are complex numbers satisfying $|\alpha|^{2}+|\beta|^{2}=1$

Simplest quantum system with two degrees of freedom

Recall

$z=x+i y$ complex number
where $i=\sqrt{-1}$
$|z|=\sqrt{x^{2}+y^{2}}$

Such a state is called a quit.
We can represent it by a vector $\binom{\alpha}{\beta} \leftarrow$ unit vector since $|\alpha|^{2}+|\beta|^{2}=1$
E.g. a photon may have the state " $\frac{1}{\sqrt{2}}$ amplitude on $|0\rangle, \frac{1}{\sqrt{2}}$ amplitude on $|1\rangle$ " $\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$

$$
\begin{aligned}
& \sqrt{-1} \\
& \text { OR } \quad\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2}+\frac{1}{2}=1 \\
& " \frac{i}{\sqrt{2}} \text { amplitude on }|0\rangle,-\frac{1}{\sqrt{2}} \text { amplitude on }|1\rangle " \quad\binom{1 / \sqrt{2}}{-1 / \sqrt{2}} \\
& \text { OR }\left|\frac{i}{\sqrt{2}}\right|^{2}+\left(\frac{-1}{\sqrt{2}}\right)^{2}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

"1 $\underbrace{\text { " }}_{\text {called } "|0\rangle \text { " } 10 \text { amplitude on } 10\rangle, 0 \text { amplitude on } 11\rangle "\binom{1}{0}}$

NEXT

LECTURE

You cannot read a quantum state, i.e., access α, β directly
Only way to extract information is via measurement

