
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Multi-dimensional Arrays
Allocation and Layout of Arrays

© 2018 L. V. Kale at the University of Illinois Urbana-Champaign

Importance of Array Layout

• We now know that trying to enhance spatial locality in our memory
accesses is important for performance

• The reasons are somewhat circular
• Architects observed that programmers tend to access nearby locations: e.g.,

linear sweep through a 1-dimensional (1-D) array

• Provided features in hardware that improve performance for such accesses
• Cache lines contain 64 contiguous bytes

• Hardware prefetcher

• This is the reason why it is important to know how arrays are laid out
in memory
• Of course, a 1-D array is laid out as expected

L.V.Kale 2

Statically Allocated Multi-dimensional Arrays

• These are either
• Global variables or

• Declared inside a function (and so allocated on stack)

• int A[10][50];

• float B[e1][e2][e3];
• Where e1,e2,e3 are expressions made of constants

• C (C99 onwards) allows these expressions to contain variables, such as those
passed as parameters of functions

• Layout for statically allocated 2-D arrays in C and C++ is “row major”
• A[i][j+1] is adjacent in memory to A[i][j]

L.V.Kale 3

Layout and Cache Lines

• With row-major layout, locations within a row, in consecutive
columns are next to each other in memory

L.V.Kale 4

A[0][0]

A[1][0] A[1][N-1]

A[0][N-1]

Dynamically Allocated Multi-dimensional Arrays

• A common method for allocating these
is to create arrays of array-pointers

• But this is bad for locality

• Consecutive rows may be arbitrarily
separated in memory

• Padding in allocation wastes memory

• Reduced predictability for loop
accesses means prefetchers do not
perform well

L.V.Kale 5

A= … malloc(sizeof(float*)*M);

for (i = 0; i < M; i++)

A[i] = … malloc(sizeof(float) * N);

Dynamically Allocated Multi-dimensional Arrays II

• A better, and more general, method is
to allocate all the space with one
allocation call

• And then to index calculation explicitly

• Indexing is somewhat awkward, but
you get used to it
• You can use macros: indexOf(i,j,N)

• The apparently complicated index
calculations are not expensive, because
the compiler can easily optimize them

• Or use an array of pointers into a
contiguously allocated space

L.V.Kale 6

A= … malloc(sizeof(float*)*M*N);

…

Instead of A[i][j], use: A[N*i + j]

OR

Dynamically Allocated Multi-dimensional Arrays III

• You can use similar index expressions for higher dimensional arrays

• By convention, and to retain the pattern of static allocation, the index
expressions are written so as to make the last dimension contiguous

L.V.Kale 7

A = (float *)malloc(sizeof(float) * L*M*N); // in C

A = new float[L*M*N]; // in C++

…

Instead of A[i][j][k], use: A[M*N*i + N*j + k]

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Cache Optimizations
Estimating Performance with Cache Misses

© 2018 L. V. Kale at the University of Illinois Urbana-Champaign

9

To be able to effectively program a modern
multiprocessor, we have to understand

what it is made up of and how it came to
be the way it is today

L.V.Kale

What Determines Sequential Performance

• After the code has been compiled (so compilers are out of the
picture)

• The floating point units can process arithmetic at a certain rate

• The memory system can bring data into registers at a certain rate
• By “rate,” we mean bandwidth (i.e., bytes/second)

• Which rate decides performance?
• The slowest one

• This is quantified in the idea of floating point (or arithmetic) intensity
• I.e., how many double precision arithmetic operations does a given code do

per word (or byte) transferred between memory and registers via “load” or
“store” operations

L.V.Kale 10

Example Code for Estimating Performance

A loop with some data accesses:

for (i=0; i<N; i++)
x += A[i];

Assumptions:

• Clock rate 2 GHz (0.5 ns period
per clock cycle)

• 1 FP per cycle (note: if we had
FMAD operation, it could be 2)

• N is 1,000,000

• Cache line size is 64 bytes

• A is an array of doubles
• 8 bytes each

• Cache miss penalty: 50 ns

L.V.Kale 11

If there were no cache misses:
N * 0.5 ns = 0.5 ms

With cache misses:
N * 0.5 ns + (N/8) * 50 ns =
0.5 ms + 6.25 ms = 6.75 ms

More than 10 times slower

Arithmetic Intensity: Example

• What is arithmetic intensity for the following loops?

L.V.Kale 12

for(i=0;i<N;i++)
x+=A[i];

for(i=0;i<N;i++)
x+=A[i]*A[i];

for(i=0;i<N;i++)
x+=A[i]*A[i]*A[i];

• In each iteration, there is only 1 word loaded: A[i]
• Why are we not counting x?
• Because x will be in a register. Loaded once at the beginning of the loop

•How many floating point operations per iteration?
• Let us count “+” and “*”s separately
• 1, 2, and 3 respectively (We don’t count integer arithmetic in i++. Why?)

•So, arithmetic intensity of Loop1: 1 FP/word (or 1FP/8bytes: 0.125)

• Loop2: double, Loop 3: triple (i.e 3/8)

Loop 1 Loop 2 Loop 3

Improving Arithmetic Intensity: Example 2

• What is arithmetic intensity for the following loops?

L.V.Kale 13

for(i=0;i<N;i++)
x + =A[i];

for(i=0;i<N;i++)
s += A[i]*A[i];

for(i=0;i<N;i++) {
x +=A[i];
s += A[i]*A[i];

}

•Code1 does 1FP op per load

•Code 2 does 2 FP ops per load, and accomplishes the same result
• Loop2 will be faster

Code 1 Code 2

Improving Arithmetic Intensity: Example 3

• What is arithmetic intensity for the following loops?

L.V.Kale 14

for(i=0;i<N;i++)
x + =A[i];

for(i=0;i<N;i++)
max = A[i]>max ? A[i] :max;

for(i=0;i<N;i++) {
x +=A[i];
max = A[i]>max ? A[i] :max;

}

•No floating point ops in the second loop, but still code2 is better,
because it incurs fewer cache misses

Code 1 Code 2

Cache Based Optimizations

• For a given code, with a fixed arithmetic intensity, how to improve
performance?

• The basic idea is to decrease the number of cache misses

L.V.Kale 15

Doubly Nested Loop

• What is the problem? Count the number of misses

• Assume the cache size is less than N*w,
• Where w is the number of words per cache line

• Every access will lead to a cache miss
• N2 cache misses

L.V.Kale 16

for(i=0;i<N;i++)
for(j=0;j<M;j++)

x += A[j][i];

Fixing the Doubly Nested Loop: Reordering

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

x += A[j][i]

L.V.Kale 17

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Cache Optimizations: Improving Reuse
Matrix Vector Multiplication

© 2018 L. V. Kale at the University of Illinois Urbana-Champaign

Matrix Vector Multiply

• Assume cache is smaller than N words

• A and C incur only compulsory misses (N^2/w, N/w respectively)

• B is loaded multiple times, with N^2/w misses
• For each row of A, B is traversed once, but by the time we go to the next

row, the older portions of B are out of the cache

L.V.Kale 19

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

C[i] += A[i][j] * B[j] X =

B CA

Matrix Vector Multiply: improve reuse of B?

• Idea: let us reuse a value from B (say B[j]) multiple times
• Lets say we load B[0]..

• Which calculations need it?

• A loop interchange will reuse B[0], but A accesses will suffer
• Column order traversal

• But if we do loop interchange only for X rows, the lines (orange) will still
be in cache

L.V.Kale 20

X =

for (i = 0; i < N; i+= X)
for (j = 0; j < N; j++)

for(i = 0; i < N; i++)
C[i] += A[i][j]*B[j]

B CA

x

Matrix Vector Multiply: improved

• Assume cache is smaller than N words

• A and C incur only compulsory misses (N^2/w, N respectively)

• B is reused X times with total N^2/x*w misses
• For each X rows of A, B is traversed once

L.V.Kale 21

X =

for (i = 0; i < N; i+= X)
for (j = 0; j < N; j++)

for(k = 0; k < X; k++)
C[i+k] += A[i+k][j]*B[j]

B CA

x

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Cache Optimizations: Tiling
Matrix Transpose

© 2018 L. V. Kale at the University of Illinois Urbana-Champaign

Classic Example of Optimizing for Cache Size
• Matrix transpose

• A matrix accesses: N2 misses!

• B accesses are fine:
• Only compulsory misses: N2/w misses

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

B[i][j] = A[j][i]

L.V.Kale 24AB

Solution: Tiling

for (i = 0; i < N; i += X)

for (j = 0; j < N; j += X)

for (p = 0; p < X; p++)

for (q = 0; q < Y; q++)

B[i+p][j+q] = A[j+q][i+p]

L.V.Kale 25

Let us assume N is a
multiple of X, the tile-size.

x

B A

Cache-Oblivious Algorithms

• All of the above ideas were for taking into account the specific finite
cache size

• Also, we focused on only one cache level, but in reality there are L1,
L2, and L3

• Another idea is to write your algorithms in a way that ignores the
specific cache size, but still improves cache performance
• Cache-oblivious algorithms, which are typically recursive

L.V.Kale 26

Cache-Oblivious Algorithms

L.V.Kale 27B A

Cache-Oblivious Algorithms

L.V.Kale 28B A

Cache-Oblivious Matrix Transpose

L.V.Kale 30B A

Cache-Oblivious Matrix Transpose

recTranspose(A, x, y, B, t, N) { // t is tilesize

if (t < X)

transpose(A, x, y, B, t, N);

else {

recTranspose(A, x, y, B, t/2, N);

recTranspose(A, x, y+t/2, B, t/2, N);

recTranspose(A, x+t/2, y, B, t/2, N);

recTranspose(A, x+t/2, y+t/2, B, t/2, N);

} }

L.V.Kale 31

