Multi-dimensional Arrays

Allocation and Layout of Arrays

© 2018 L. V. Kale at the University of lllinois Urbana-Champaign

Importance of Array Layout

* We now know that trying to enhance spatial locality in our memory
accesses is important for performance

* The reasons are somewhat circular

* Architects observed that programmers tend to access nearby locations: e.g.,
linear sweep through a 1-dimensional (1-D) array

* Provided features in hardware that improve performance for such accesses
* Cache lines contain 64 contiguous bytes
* Hardware prefetcher

* This is the reason why it is important to know how arrays are laid out
In memory
* Of course, a 1-D array is laid out as expected

Statically Allocated Multi-dimensional Arrays

* These are either
* Global variables or
e Declared inside a function (and so allocated on stack)

* int A[10][50];

e float B[el][e2][e3];

* Where el,e2,e3 are expressions made of constants

e C(C99 onwards) allows these expressions to contain variables, such as those
passed as parameters of functions

 Layout for statically allocated 2-D arrays in C and C++ is “row major”
* Ali][j+1] is adjacent in memory to A[i][j]

L.V.Kale

Layout and Cache Lines

e With row-major layout, locations within a row, in consecutive
columns are next to each other in memory

A[0][0] Il I N N N N = EE A0][N-1]
A[1]I0] e 9 P P P o o e ALZJIN-1]
I B e
I B e
I B e
I B e
I B e
I B e

L.V.Kale

Dynamically Allocated Multi-dimensional Arrays

* A common method for allocating these
is to create arrays of array-pointers e il (e e ())

* But this is bad for locality 0; 1 < M; i++)

.. malloc (sizeof (float) * N);

for (1
A[i]

* Consecutive rows may be arbitrarily
separated in memory

* Padding in allocation wastes memory

e Reduced predictability for loop
accesses means prefetchers do not

perform well

L.V.Kale 5

Dynamically Allocated Multi-dimensional Arrays |

* A better, and more general, method is 2= .. malloc(sizeof (float*)*M*N);
to aIIoc?ate all the space with one Inotead of A[i][3], use: A[N*i + 4]
allocation call

* And then to index calculation explicitly

OR

* Indexing is somewhat awkward, but
you get used to it
e You can use macros: indexOf(i,j,N)

* The apparently complicated index
calculations are not expensive, because
the compiler can easily optimize them

* Or use an array of pointers into a
contiguously allocated space

L.V.Kale 6

Dynamically Allocated Multi-dimensional Arrays Il

* You can use similar index expressions for higher dimensional arrays

* By convention, and to retain the pattern of static allocation, the index
expressions are written so as to make the last dimension contiguous

A = (float *)malloc(sizeof (float) * L*M*N); // in C
A = new float[L*M*N]; // in C++

Instead of A[1][J][k], use: A[M*N*1 + N*3j + k]

LV.Kale 7

Cache Optimizations

Estimating Performance with Cache Misses

© 2018 L. V. Kale at the University of lllinois Urbana-Champaign

To be able to effectively program a modern
multiprocessor, we have to understand
what it is made up of and how it came to
be the way it is today

What Determines Sequential Performance

» After the code has been compiled (so compilers are out of the
picture)

* The floating point units can process arithmetic at a certain rate

* The memory system can bring data into registers at a certain rate
* By “rate,” we mean bandwidth (i.e., bytes/second)

* Which rate decides performance?
* The slowest one

* This is quantified in the idea of floating point (or arithmetic) intensity

* |.e., how many double precision arithmetic operations does a given code do
per word (or byte) transferred between memory and registers via “load” or
“store” operations

LV.Kale 10

Example Code for Estimating Performance

A loop with some data accesses:

for (i=0; i<N; i++)
X += A[1];

If there were no cache misses:
N*0.5ns=0.5ms

With cache misses:
N *0.5ns+(N/8)*50ns =
0.5ms +6.25ms=6.75ms

More than 10 times slower

Assumptions:

* Clock rate 2 GHz (0.5 ns period
per clock cycle)

* 1 FP per cycle (note: if we had
FMAD operation, it could be 2)

* N is 1,000,000
* Cache line size is 64 bytes

* Ais an array of doubles
e 8 bytes each

e Cache miss penalty: 50 ns

L.V.Kale

11

Arithmetic Intensity: Example

* What is arithmetic intensity for the following loops?

for(1=0;i<N;i++) for(i=0;i<N;i++) for(i=0;i<N;i++)
x+=A[1]; x+=A[1]*A[1]; x+=A[1]*A[1]*A[1];
Loop 1 Loop 2 Loop 3

*In each iteration, there is only 1 word loaded: A[i]
* Why are we not counting x?
* Because x will be in a register. Loaded once at the beginning of the loop

* How many floating point operations per iteration?
e Let us count “+” and “*”s separately
e 1, 2, and 3 respectively (We don’t count integer arithmetic in i++. Why?)

*So, arithmetic intensity of Loop1: 1 FP/word (or 1FP/8bytes: 0.125)
* Loop2: double, Loop 3: triple (i.e 3/8)

Improving Arithmetic Intensity: Example 2

* What is arithmetic intensity for the following loops?

for(1i=0;i<N;i++) fOP(i=93%<NSi++) {
X + =A[i]; X +=A[1];
for(i=0;i<N;i++) s += A[1]*A[1];
s += A[i]*A[i]; ¥
Code 1 Code 2

* Codel does 1FP op per load

*Code 2 does 2 FP ops per load, and accomplishes the same result
* Loop?2 will be faster

L.V.Kale

13

Improving Arithmetic Intensity: Example 3

* What is arithmetic intensity for the following loops?

for(i=0;i<N;i++) for(i=0;i<N;i++) {
X + =A[i]; X +=A[1];
for(i=0;i<N;i++) max = A[i]>max ? A[i] :max;
max = A[i]>max ? A[i] :max; }
Code 1 Code 2

* No floating point ops in the second loop, but still code2 is better,
because it incurs fewer cache misses

LV.Kale 14

Cache Based Optimizations

* For a given code, with a fixed arithmetic intensity, how to improve
performance?

* The basic idea is to decrease the number of cache misses

L.V.Kale

15

Doubly Nested Loop

for(i=0;i<N;i++)
for(j=0;j<M;j++)
x += A[J][1];

* What is the problem? Count the number of misses

 Assume the cache size is less than N*w,
 Where w is the number of words per cache line

* Every access will lead to a cache miss
* N2 cache misses

Fixing the Doubly Nested Loop: Reordering

for (j = 0; j < M; Jj++)
for (1 = 0; 1 < N; i++)
X+=A[j][i] Bl Bl Bl BN BN BN BN
-

Cache Optimizations: Improving Reuse

Matrix Vector Multiplication

© 2018 L. V. Kale at the University of lllinois Urbana-Champaign

Matrix Vector Multiply

for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++)
C[i] += A[i][]J] * B[]]

* Assume cache is smaller than N words
* A and C incur only compulsory misses (N*2/w, N/w respectively)

* B is loaded multiple times, with N*2/w misses

* For each row of A, B is traversed once, but by the time we go to the next
row, the older portions of B are out of the cache

L.V.Kale 19

Matrix Vector Multiply: improve reuse of B?

X
for (J = 0; J < N; J++)
for(i = 0; 1 < N; i++) X _
C[i] += A[1]J[J]*B[]]
A B C

* |dea: let us reuse a value from B (say B[j]) multiple times

* Lets say we load BJ[O]..
 Which calculations need it?

* A loop interchange will reuse B[0O], but A accesses will suffer
e Column order traversal

e But if we do loop interchange only for X rows, the lines (orange) will still
be in cache

L.V.Kale 20

Matrix Vector Multiply: improved

for (i = @; i < N; i+= X) X
for (j = 0; j < N; j++)
for(k = 9; k < X; k++)

C[i+k] += A[i+k][j]*B[7]

* Assume cache is smaller than N words
* A and C incur only compulsory misses (N*2/w, N respectively)

* Bis reused X times with total NA2/x*w misses
* For each X rows of A, B is traversed once

L.V.Kale

21

Cache Optimizations: Tiling

Matrix Transpose

© 2018 L. V. Kale at the University of lllinois Urbana-Champaign

Classic Example of Optimizing for Cache Size

* Matrix transpose for (i = 9; i < N; i++)
* A matrix accesses: N2 misses! £ SR SR N: 44
e B accesses are fine: or (J =0; J < N; J++)

* Only compulsory misses: N2/w misses B [i] []] = A [J] [1]

B L.V.Kale A 24

Solution: Tiling d

Let us assume N is a
multiple of X, the tile-size.

for (1 =0; 1 < N; i += X)
for (j = 0; j < N; j += X)
for (p = 0; p < X; p++)
for (g = 90; g < Y; q++)
B[i+p][j+q] = A[J+q][i+p]

L.V.Kale

25

Cache-Oblivious Algorithms

 All of the above ideas were for taking into account the specific finite
cache size

 Also, we focused on only one cache level, but in reality there are L1,
L2, and L3

* Another idea is to write your algorithms in a way that ignores the
specific cache size, but still improves cache performance

e Cache-oblivious algorithms, which are typically recursive

L.V.Kale

26

Cache-Oblivious Algorithms

Cache-Oblivious Algorithms

Cache-Oblivious Matrix Transpose

Cache-Oblivious Matrix Transpose

recTranspose(A, x, y, B, t, N) { // t is tilesize

if (t < X)
transpose(A, x, y, B, t, N);

else {
recTranspose(A, X, Y, B, t/2, N);
recTranspose(A, X, y+t/2, B, t/2, N);
recTranspose(A, x+t/2, vy, B, t/2, N);
recTranspose(A, x+t/2, y+t/2, B, t/2, N);

b}

L.V.Kale

