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Faults, Errors and Failures
• Fault

• The cause of an error (e.g. a bug, stuck bit, alpha particle) 

• Error
• The part of total state that may lead to a failure (e.g. a bad value) 

• Failure:
• A transition to incorrect service (an event, e.g. the start of an unplanned 

service outage, premature job termination) 
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Transient, Intermittent, and Permanent Faults 
• Transient

• Usually uncontrollable, environmentally influenced – cosmic radiation
• Intermittent 

• Marginal or failing hardware 
• Through aging, parameter of a device drifts in value, exceeds built-in margin 
• E.g. intermittency of contacts at solder joints, threshold voltage of a MOSFET, 

etc. 

• Permanent 
• Irreversible physical changes 
• Usually cause device to be inoperable 
• May be the evolution of intermittent errors, also extreme environmental 

conditions 
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Hard vs. Soft 
• “Hard” usually refers to a hard stop failure 

• ~detectable by the system/application/hardware 

• “Soft” usually refers to data corruption 
• ~undetectable by the system/application/hardware 
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Where Do Errors in Supercomputers Come From? 
• HPC systems of today are extremely complex systems made from 

hardware and software components that were never designed to work 
together as one complete system 

• Dielectric breakdown and electrical breakdown 
• Temperature (extremes and variations) 
• Aging 
• Manufacturing defects 
• Stress 
• Extreme conditions 
• Voltage fluctuation 
• Electro-magnetic interference 
• Terrestrial neutrons 
• Cosmic radiation 
• Alpha particles 
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How Do Errors Manifest in Supercomputers? 
• Hardware or software crashes 

• System reboot usually fixes this 
• Application usually crashes, must be restarted 

• Performance variation 
• Terribly hard to diagnose and fix 
• Usually wasteful but not destructive 
• Much worse for tightly-coupled numerical simulations 

• Data corruption 
• Clearly a wrong answer in a calculation – must re-run some of the simulation 

again 
• Silently corrupted calculation – result is corrupted, but in a way that we cannot tell
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Failures on Titan
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Failure Category Failure Type Count Percentage

GPU

GPU DBE
GPU DPR
GPU Bus
SXM power off
SXM warm temp

51
66
11
14
2

16.1%
20.8%
3.5%
4.4%
0.6%

Processor
Machine check 
exception bank 
0,2,6

31 9.8%

Memory
Machine check 
exception Bank 4
MCE

120 37.9%

Blade Voltage fault 
Module failed

12
10

3.8%
3.1%



Typical Fault-Tolerance Problem
• Assume:

• A problem that needs to run for a long time (e.g. days) …
• On a system in which the MTBF (Mean Time Between Failures) is relatively 

small (e.g. hours)

• Problem:
• How to get a complete execution ?
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Typical Fault-Tolerance Solution
• Checkpoint/Restart

• Explore iterative/periodic pattern in applications
• After running for a given period, checkpoint the application (i.e. save minimal 

state required to be able to restart, if there is a failure)

• Basic Idea:
• Do some work; save/dump state; do more work; save state, do more work, 

etc., etc.
• In case of failure, restart from last checkpoint taken
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Typical Fault-Tolerance Solution
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compute dump compute dump compute dump . . . 

compute dump comp

restart compute dump . . . 

• Execution without failures:

compute

• Execution with a failure:

• Dump (Checkpoint) phase: save essential state 
• typically saving data to disk (checkpoint file) 

• Restart phase: recover essential state



How Often to Checkpoint? 
Tradeoffs in Dump Period Selection:
• If  T(compute) >> T(dump)

• Less overhead imposed by dumping data
• More work likely to be lost when a failure occurs 

• If  T(compute) ≈ T(dump)
• More overhead due to dumping data
• Less work is lost in case of failure

• Classical checkpoint decision:
• What is the checkpoint period that will minimize the total application execution 

time ?
• Ref: J.Daly – A higher order estimate of the optimum checkpoint interval for 

restart dumps. Future Generation Computer Systems, 22(2006), pp.303-312
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Standard Fault-Tolerance Model
• A simple model

• t: regular computation
• δ: dump of checkpoint
• X: failure,   R: recovery time,  M: MTBF
• Ts: Total “useful” execution = N t
• Tw: Total walltime of execution 

L.V.Kale 12



Standard Fault-Tolerance Model
A simple model (cont.):

Tw(t) = computation time + dump time + rework time + recovery time

=    Ts + (Ts/t – 1) d + [t+d] f n(t)  +      R n(t)
where:

f: fraction of work lost, on average 

n(t): number of failures, on average
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Standard Fault-Tolerance Model
A simple model:
• Assumptions:

• Only one failure per compute segment
• No failures during dump and recovery

• Approximations (see reference):
• f = ½
• n(t) ≈ Ts [(t+δ)/M]  / t

Tw(t) = Ts + (Ts/t – 1)d + [(t +d)/2 + R] Ts/t (t+d) / M

To minimize Tw(t) :  d(Tw)/dt = 0  
Þ t (opt)  = [ 2 d (M+R)] ½     for  (t+d) << M

Example:  M=1 hour, R=d=1 min. Þ t (opt) ≈ 11 min. , ≈ 9% overhead!
But for checkpoints to disk, d can be 10+ minutes (esp. if almost all memory is being dumped) 
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Higher Order Fault-Tolerance Model
Note: (ignore for the exam)
• This comes from a simple, first order model
• A higher order model (see Ref.):

• t (opt)  =  ( 2 δ M ) ½ – δ if  δ < M/2
• t (opt)  =  M                       if  δ ³ M/2

• In practice, checkpoint/restart is largely used by real applications
• Tolerance to failures and to execution scheduling
• Job “failure” = Job is aborted by the system scheduler
• New executions simply restart from last checkpoint
• Dump phase can be accelerated with local disks/filesystems
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Fault Trends in Large Systems
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No matter how reliable the components are, a large system will be likely to suffer a failure 

 100

 1000

 10000

 100000

 1e+06

 1994  1998  2002  2006  2010  2014  2018

N
um

be
r o

f S
oc

ke
ts

Year

Exascale



Fault Trends in Large Systems
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No matter how reliable the components are, a large system will be likely to suffer a failure 
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Fault Tolerance in Parallel Systems
• As machines grow in size

• MTBF decreases
• Applications have to tolerate faults

• Checkpoint/Restart may not scale
• All nodes are rolled back just because one crashed
• Even nodes independent of the crashed node are restarted
• Typically requires same configuration for restart
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Fault Tolerance References
• Checkpoint-based methods

• Coordinated – Blocking [Tamir84], Non-blocking [Chandy85] Co-check, 
Starfish, Clip – fault tolerant MPI

• Uncoordinated – suffers from rollback propagation
• Communication – [Briatico84], doesn’t scale well

• Message-Logging schemes
• Basic idea: only roll back the failed processors
• Pessimistic – MPICH-V1 and V2, SBML [Johnson87]
• Optimistic – [Strom85] unbounded rollback, complicated recovery
• Causal Logging – [Elnozahy93] Manetho, complicated causality tracking and 

recovery
• Charm++ based methods :

• Message-logging.. Actually benefits performance because you can parallelize the restart
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Silent Data Corruption
• Cosmic Rays from Outer Space! 

• Muons (very heavy electrons) 
• Most abundant particle in shower 
• Deposits energy in matter in an even distributed manner 
• Like throwing a baseball at a stack of pillows 
• They don’t do much damage to you or electrical circuits 

• Neutrons 
• ~70per hour per square centimeter in Los Alamos 
• Only “see” nuclei 
• Most matter is nearly invisible to a neutron – just goes right through 
• However, when it hits something, it hits it HARD! 

• Radiation and you 
• 3.5 billion years of evolution has equipped you to repair yourself 
• Computers aren’t as good at self-repair 
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Impact of silent data corruption
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Dealing with silent data corruption
• How do you know if happened??
• How to prevent it in any case?
• Redundancy is one answer:

• TMR: triple modular redundancy. Applying in parallel computations is tricky.
• You can compare messages among 3 copies. Note floating point comparisons cannot be exact

• Take advantage of continuity of “field” data
• Nearby temperatures/pressures and such physical quantities being simulated don’t normally 

differ by a huge amount. Check, and if they are found to be different, fix them
• In addition, for control variables, such as loop control variables, indices, etc. : protect them 

via replication and duplicate computations (or triplicate, if you really want correction)

• In the meanwhile, practical checkpoint/restart, with  use of Daly’s formula, 
is good enough

• Possibly with automation (e.g. how AMPI or Charm++ does it)
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Fault Tolerance Research: Thoughts
• Fault tolerance is a really interesting area of research

• With very “nice” and deep challenges

• However, improved engineering keeps making this research 
unnecessary

• Its forever ”we may need this in future” mode

• But it is still worth while continuing research
• E.g. low-threshold voltage components may be necessary in future to 

drastically reduce power consumption
• But they increase failure probabilities
• If we can handle some failures in software, a wider variety of design options 

can be considered
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