CS420: Fault Tolerance

Laxmikant V. Kale

Faults, Errors and Failures

* Fault
* The cause of an error (e.g. a bug, stuck bit, alpha particle)

* Error
* The part of total state that may lead to a failure (e.g. a bad value)

e Failure:

A transition to incorrect service (an event, e.g. the start of an unplanned
service outage, premature job termination)

L.V.Kale

Transient, Intermittent, and Permanent Faults

* Transient
* Usually uncontrollable, environmentally influenced — cosmic radiation

* Intermittent
* Marginal or failing hardware
* Through aging, parameter of a device drifts in value, exceeds built-in margin
* E.g. intermittency of contacts at solder joints, threshold voltage of a MOSFET,
etc.
* Permanent
* Irreversible physical changes
* Usually cause device to be inoperable

* May be the evolution of intermittent errors, also extreme environmental
conditions

L.V.Kale

Hard vs. Soft

e “Hard” usually refers to a hard stop failure
» ~detectable by the system/application/hardware

» “Soft” usually refers to data corruption
* ~undetectable by the system/application/hardware

Where Do Errors in Supercomputers Come From?

* HPC systems of today are extremely complex systems made from
hardware and software components that were never designed to work
together as one complete system

Dielectric breakdown and electrical breakdown
Temperature (extremes and variations)
Aging

Manufacturing defects

Stress

Extreme conditions

Voltage fluctuation

Electro-magnetic interference
Terrestrial neutrons

Cosmic radiation

Alpha particles

L.V.Kale 5

How Do Errors Manifest in Supercomputers?

 Hardware or software crashes
e System reboot usually fixes this
e Application usually crashes, must be restarted

 Performance variation
* Terribly hard to diagnose and fix
e Usually wasteful but not destructive
* Much worse for tightly-coupled numerical simulations

* Data corruption

* Clearly a wrong answer in a calculation — must re-run some of the simulation
again
 Silently corrupted calculation — result is corrupted, but in a way that we cannot tell

L.V.Kale

Failures on Titan

GPU DBE 16.1%
GPU DPR 66 20.8%
GPU GPU Bus 11 3.5%
SXM power off 14 4.4%
SXM warm temp 2 0.6%
Machine check 31 9.8%
Processor exception bank
0,2,6
Machine check 120 37.9%
Memory exception Bank 4
MCE
Blade Voltage fault 12 3.8%

Module failed 10 3.1%

L.V.Kale

Typical Fault-Tolerance Problem

* Assume:
* A problem that needs to run for a long time (e.g. days) ...

* On a system in which the MTBF (Mean Time Between Failures) is relatively
small (e.g. hours)

* Problem:
* How to get a complete execution ?

L.V.Kale

Typical Fault-Tolerance Solution

* Checkpoint/Restart
* Explore iterative/periodic pattern in applications
* After running for a given period, checkpoint the application (i.e. save minimal
state required to be able to restart, if there is a failure)
* Basic ldea:

* Do some work; save/dump state; do more work; save state, do more work,
etc., etc.

* |In case of failure, restart from last checkpoint taken

L.V.Kale

Typical Fault-Tolerance Solution

e Execution without failures:

compute dump compute dump compute dump
* Execution with a failure:
compute dump | comp
restart compute dump compute

* Dump (Checkpoint) phase: save essential state
* typically saving data to disk (checkpoint file)

* Restart phase: recover essential state

L.V.Kale

10

How Often to Checkpoint?

Tradeoffs in Dump Period Selection:

e If T(compute)>> T(dump)
* Less overhead imposed by dumping data
* More work likely to be lost when a failure occurs

If T(compute) = T(dump)
* More overhead due to dumping data
* Less work is lost in case of failure

Classical checkpoint decision:

What is the checkpoint period that will minimize the total application execution
time ?

Ref: J.Daly — A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Computer Systems, 22(2006), pp.303-312

Standard Fault-Tolerance Model

* Asimple model
e T:regular computation
* 6: dump of checkpoint
e X:failure, R:recoverytime, M: MTBF
e Ts: Total “useful” execution =Nt
e Tw: Total walltime of execution

t=0

L.V.Kale

T,7)

12

Standard Fault-Tolerance Model

A simple model (cont.):

T,,(t) = computation time + dump time + rework time + recovery time
R n(t)

= T

S

where:

¢: fraction of work lost, on average

n(t): number of failures, on average

T

+(T/t—1) 8+ [t+3] d n(T) +

t=0

L.V.Kale

T,7)

13

Standard Fault-Tolerance Model

A simple model:

* Assumptions:
* Only one failure per compute segment
* No failures during dump and recovery

* Approximations (see reference):
° (I) i 'yz
* n(t)=Ts [(t+6)/M] /=

Tw(t) =Ts + (Ts/Tt—1)d + [(t +8)/2 + R] Ts/z (t+d) / M

To minimize Tw(t) : d(Tw)/dt =0
= 1 (opt) =[2 8 (M+R)] > for (t+0) << M

Example: M=1 hour, R=0=1 min. = 1 (opt) = 11 min., = 9% overhead!
But for checkpoints to disk, 0 can be 10+ minutes (esp. if almost all memory is being dumped)

L.V.Kale

14

Higher Order Fault-Tolerance Model

Note: (ignore for the exam)
* This comes from a simple, first order model

* A higher order model (see Ref.):
e T(opt) = (26M)” =6 if 6< M/2
e T(opt) = M if 6> M/2
* |[n practice, checkpoint/restart is largely used by real applications
* Tolerance to failures and to execution scheduling
* Job “failure” = Job is aborted by the system scheduler
* New executions simply restart from last checkpoint
* Dump phase can be accelerated with local disks/filesystems

L.V.Kale

15

Fault Trends in Large Systems

No matter how reliable the components are, a large system will be likely to suffer a failure

1e+06 ¢ I | _
- Exascale .
i T~]
m - H B B B —
E 100000 ¢ . " 11 |
g i g |
m - .I:IIIIII
“6 10000:_ ...IIIIIIII E
@ - =snngfzonc"
S " g i
E . m m m B HE g B : =
Z 1000 =s=fEF .
100_ | | | | | | I_

1994 1998 2002 2006 2010 2014 2018
Year

L.V.Kale

16

Fault Trends in Large Systems

No matter how reliable the components are, a large system will be likely to suffer a failure

MTBF/Socket=500 years
1000 MTBF/Socket=50 years -
75 MTBF/Socket=5 years
= MTBF/Socket=0.5 years
o 100 - .
=
o 0.9 days
-_g 10 -
@ 2.2 hours
= 1L .
LL
f_n 13 minutes
= 0.1 - a
1.3 minutes
0.01 ' ' ' '
10000 20000 100000 200000

Number of Sockets

L.V.Kale

Fault Tolerance in Parallel Systems

* As machines grow in size
* MTBF decreases
* Applications have to tolerate faults

* Checkpoint/Restart may not scale
* All nodes are rolled back just because one crashed
* Even nodes independent of the crashed node are restarted
e Typically requires same configuration for restart

L.V.Kale

18

Fault Tolerance References

* Checkpoint-based methods

e Coordinated — Blocking [Tamir84], Non-blocking [Chandy85] Co-check,
Starfish, Clip — fault tolerant MPI

* Uncoordinated — suffers from rollback propagation
e Communication — [Briatico84], doesn’t scale well

* Message-Logging schemes
e Basicidea: only roll back the failed processors
e Pessimistic— MPICH-V1 and V2, SBML [Johnson87]
* Optimistic — [Strom85] unbounded rollback, complicated recovery

e (Causal Logging — [EInozahy93] Manetho, complicated causality tracking and
recovery

 Charm++ based methods :
* Message-logging.. Actually benefits performance because you can parallelize the restart

Silent Data Corruption

* Cosmic Rays from Outer Space!

* Muons (very heavy electrons)
* Most abundant particle in shower
* Deposits energy in matter in an even distributed manner
* Like throwing a baseball at a stack of pillows
* They don’t do much damage to you or electrical circuits

* Neutrons
e ~70per hour per square centimeter in Los Alamos
* Only “see” nuclei
* Most matter is nearly invisible to a neutron — just goes right through
 However, when it hits something, it hits it HARD!

« Radiation and you

e 3.5 billion years of evolution has equipped you to repair yourself
 Computers aren’t as good at self-repair

Impact of silent data corruption

Utilization

0.8
0.6
0.4
0.2

4K
Numbl 64K 556k .
er OfSOCkets

No Fault-tolerance

Vulnerability

L.V.Kale

Probability of incorrect results

Utilization

0.8
0.6
0.4
0.2

Checkpoint/restart

21

Dealing with silent data corruption

* How do you know if happened??
* How to prevent it in any case?

* Redundancy is one answer:
 TMR: triple modular redundancy. Applying in parallel computations is tricky.
* You can compare messages among 3 copies. Note floating point comparisons cannot be exact
* Take advantage of continuity of “field” data

* Nearby temperatures/pressures and such physical quantities being simulated don’t normally
differ by a huge amount. Check, and if they are found to be different, fix them

* In addition, for control variables, such as loop control variables, indices, etc. : protect them
via replication and duplicate computations (or triplicate, if you really want correction)

* In the meanwhile, practical checkpoint/restart, with use of Daly’s formula,
is good enough
* Possibly with automation (e.g. how AMPI or Charm++ does it)

L.V.Kale 22

Fault Tolerance Research: Thoughts

* Fault tolerance is a really interesting area of research
* With very “nice” and deep challenges

 However, improved engineering keeps making this research
unnecessary

* Its forever “we may need this in future” mode

* But it is still worth while continuing research

* E.g. low-threshold voltage components may be necessary in future to
drastically reduce power consumption
* But they increase failure probabilities

* |f we can handle some failures in software, a wider variety of design options
can be considered

