
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

CS420: Fault Tolerance
Laxmikant V. Kale

© 2018 L. V. Kale at the University of Illinois Urbana

Faults, Errors and Failures
• Fault

• The cause of an error (e.g. a bug, stuck bit, alpha particle)

• Error
• The part of total state that may lead to a failure (e.g. a bad value)

• Failure:
• A transition to incorrect service (an event, e.g. the start of an unplanned

service outage, premature job termination)

L.V.Kale 2

Transient, Intermittent, and Permanent Faults
• Transient

• Usually uncontrollable, environmentally influenced – cosmic radiation
• Intermittent

• Marginal or failing hardware
• Through aging, parameter of a device drifts in value, exceeds built-in margin
• E.g. intermittency of contacts at solder joints, threshold voltage of a MOSFET,

etc.

• Permanent
• Irreversible physical changes
• Usually cause device to be inoperable
• May be the evolution of intermittent errors, also extreme environmental

conditions

L.V.Kale 3

Hard vs. Soft
• “Hard” usually refers to a hard stop failure

• ~detectable by the system/application/hardware

• “Soft” usually refers to data corruption
• ~undetectable by the system/application/hardware

L.V.Kale 4

Where Do Errors in Supercomputers Come From?
• HPC systems of today are extremely complex systems made from

hardware and software components that were never designed to work
together as one complete system

• Dielectric breakdown and electrical breakdown
• Temperature (extremes and variations)
• Aging
• Manufacturing defects
• Stress
• Extreme conditions
• Voltage fluctuation
• Electro-magnetic interference
• Terrestrial neutrons
• Cosmic radiation
• Alpha particles

L.V.Kale 5

How Do Errors Manifest in Supercomputers?
• Hardware or software crashes

• System reboot usually fixes this
• Application usually crashes, must be restarted

• Performance variation
• Terribly hard to diagnose and fix
• Usually wasteful but not destructive
• Much worse for tightly-coupled numerical simulations

• Data corruption
• Clearly a wrong answer in a calculation – must re-run some of the simulation

again
• Silently corrupted calculation – result is corrupted, but in a way that we cannot tell

L.V.Kale 6

Failures on Titan

L.V.Kale 7

Failure Category Failure Type Count Percentage

GPU

GPU DBE
GPU DPR
GPU Bus
SXM power off
SXM warm temp

51
66
11
14
2

16.1%
20.8%
3.5%
4.4%
0.6%

Processor
Machine check
exception bank
0,2,6

31 9.8%

Memory
Machine check
exception Bank 4
MCE

120 37.9%

Blade Voltage fault
Module failed

12
10

3.8%
3.1%

Typical Fault-Tolerance Problem
• Assume:

• A problem that needs to run for a long time (e.g. days) …
• On a system in which the MTBF (Mean Time Between Failures) is relatively

small (e.g. hours)

• Problem:
• How to get a complete execution ?

L.V.Kale 8

Typical Fault-Tolerance Solution
• Checkpoint/Restart

• Explore iterative/periodic pattern in applications
• After running for a given period, checkpoint the application (i.e. save minimal

state required to be able to restart, if there is a failure)

• Basic Idea:
• Do some work; save/dump state; do more work; save state, do more work,

etc., etc.
• In case of failure, restart from last checkpoint taken

L.V.Kale 9

Typical Fault-Tolerance Solution

L.V.Kale 10

compute dump compute dump compute dump . . .

compute dump comp

restart compute dump . . .

• Execution without failures:

compute

• Execution with a failure:

• Dump (Checkpoint) phase: save essential state
• typically saving data to disk (checkpoint file)

• Restart phase: recover essential state

How Often to Checkpoint?
Tradeoffs in Dump Period Selection:
• If T(compute) >> T(dump)

• Less overhead imposed by dumping data
• More work likely to be lost when a failure occurs

• If T(compute) ≈ T(dump)
• More overhead due to dumping data
• Less work is lost in case of failure

• Classical checkpoint decision:
• What is the checkpoint period that will minimize the total application execution

time ?
• Ref: J.Daly – A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computer Systems, 22(2006), pp.303-312

L.V.Kale 11

Standard Fault-Tolerance Model
• A simple model

• t: regular computation
• δ: dump of checkpoint
• X: failure, R: recovery time, M: MTBF
• Ts: Total “useful” execution = N t
• Tw: Total walltime of execution

L.V.Kale 12

Standard Fault-Tolerance Model
A simple model (cont.):

Tw(t) = computation time + dump time + rework time + recovery time

= Ts + (Ts/t – 1) d + [t+d] f n(t) + R n(t)
where:

f: fraction of work lost, on average

n(t): number of failures, on average

L.V.Kale 13

Standard Fault-Tolerance Model
A simple model:
• Assumptions:

• Only one failure per compute segment
• No failures during dump and recovery

• Approximations (see reference):
• f = ½
• n(t) ≈ Ts [(t+δ)/M] / t

Tw(t) = Ts + (Ts/t – 1)d + [(t +d)/2 + R] Ts/t (t+d) / M

To minimize Tw(t) : d(Tw)/dt = 0
Þ t (opt) = [2 d (M+R)] ½ for (t+d) << M

Example: M=1 hour, R=d=1 min. Þ t (opt) ≈ 11 min. , ≈ 9% overhead!
But for checkpoints to disk, d can be 10+ minutes (esp. if almost all memory is being dumped)

L.V.Kale 14

Higher Order Fault-Tolerance Model
Note: (ignore for the exam)
• This comes from a simple, first order model
• A higher order model (see Ref.):

• t (opt) = (2 δ M) ½ – δ if δ < M/2
• t (opt) = M if δ ³ M/2

• In practice, checkpoint/restart is largely used by real applications
• Tolerance to failures and to execution scheduling
• Job “failure” = Job is aborted by the system scheduler
• New executions simply restart from last checkpoint
• Dump phase can be accelerated with local disks/filesystems

L.V.Kale 15

Fault Trends in Large Systems

L.V.Kale 16

No matter how reliable the components are, a large system will be likely to suffer a failure

 100

 1000

 10000

 100000

 1e+06

 1994 1998 2002 2006 2010 2014 2018

N
um

be
r o

f S
oc

ke
ts

Year

Exascale

Fault Trends in Large Systems

L.V.Kale 17

No matter how reliable the components are, a large system will be likely to suffer a failure

 0.01

 0.1

 1

 10

 100

 1000

 10000 20000 100000 200000

M
TB

F
M

ac
hi

ne
 (h

ou
rs

)

Number of Sockets

1.3 minutes

13 minutes

2.2 hours

0.9 days

MTBF/Socket=500 years
MTBF/Socket=50 years

MTBF/Socket=5 years
MTBF/Socket=0.5 years

Fault Tolerance in Parallel Systems
• As machines grow in size

• MTBF decreases
• Applications have to tolerate faults

• Checkpoint/Restart may not scale
• All nodes are rolled back just because one crashed
• Even nodes independent of the crashed node are restarted
• Typically requires same configuration for restart

L.V.Kale 18

Fault Tolerance References
• Checkpoint-based methods

• Coordinated – Blocking [Tamir84], Non-blocking [Chandy85] Co-check,
Starfish, Clip – fault tolerant MPI

• Uncoordinated – suffers from rollback propagation
• Communication – [Briatico84], doesn’t scale well

• Message-Logging schemes
• Basic idea: only roll back the failed processors
• Pessimistic – MPICH-V1 and V2, SBML [Johnson87]
• Optimistic – [Strom85] unbounded rollback, complicated recovery
• Causal Logging – [Elnozahy93] Manetho, complicated causality tracking and

recovery
• Charm++ based methods :

• Message-logging.. Actually benefits performance because you can parallelize the restart

L.V.Kale 19

Silent Data Corruption
• Cosmic Rays from Outer Space!

• Muons (very heavy electrons)
• Most abundant particle in shower
• Deposits energy in matter in an even distributed manner
• Like throwing a baseball at a stack of pillows
• They don’t do much damage to you or electrical circuits

• Neutrons
• ~70per hour per square centimeter in Los Alamos
• Only “see” nuclei
• Most matter is nearly invisible to a neutron – just goes right through
• However, when it hits something, it hits it HARD!

• Radiation and you
• 3.5 billion years of evolution has equipped you to repair yourself
• Computers aren’t as good at self-repair

L.V.Kale 20

Impact of silent data corruption

L.V.Kale 21

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets SDC Rate

per So
cket (F

IT)

U
til

iz
at

io
n

0 1

Vulnerability

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets SDC Rate

per So
cket (F

IT)

U
til

iz
at

io
n

No Fault-tolerance Checkpoint/restart

Probability of incorrect results

Impact of silent data corruption

L.V.Kale 21

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets SDC Rate

per So
cket (F

IT)

U
til

iz
at

io
n

0 1

Vulnerability

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets SDC Rate

per So
cket (F

IT)

U
til

iz
at

io
n

No Fault-tolerance Checkpoint/restart

Probability of incorrect results

Dealing with silent data corruption
• How do you know if happened??
• How to prevent it in any case?
• Redundancy is one answer:

• TMR: triple modular redundancy. Applying in parallel computations is tricky.
• You can compare messages among 3 copies. Note floating point comparisons cannot be exact

• Take advantage of continuity of “field” data
• Nearby temperatures/pressures and such physical quantities being simulated don’t normally

differ by a huge amount. Check, and if they are found to be different, fix them
• In addition, for control variables, such as loop control variables, indices, etc. : protect them

via replication and duplicate computations (or triplicate, if you really want correction)

• In the meanwhile, practical checkpoint/restart, with use of Daly’s formula,
is good enough

• Possibly with automation (e.g. how AMPI or Charm++ does it)

L.V.Kale 22

Fault Tolerance Research: Thoughts
• Fault tolerance is a really interesting area of research

• With very “nice” and deep challenges

• However, improved engineering keeps making this research
unnecessary

• Its forever ”we may need this in future” mode

• But it is still worth while continuing research
• E.g. low-threshold voltage components may be necessary in future to

drastically reduce power consumption
• But they increase failure probabilities
• If we can handle some failures in software, a wider variety of design options

can be considered

L.V.Kale 23

