
Program Verification: Lecture 16

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

Verification of Declarative Concurrent Programs

We are now ready to discuss the subject of verification of

declarative concurrent programs, and, more specifically, the

verification of properties of Maude system modules, that is,

of declarative concurrent programs that are rewrite theories.

There are two levels of specification involved: (1) a system

specification level, provided by the rewrite theory R and

yielding an initial model TR for our program; and (2) a

property specification level, given by some property (or

properties) ϕ that we want to prove about our program. To

say that our program satisfies the property ϕ then means

exactly to say that its initial model does.

2

Verification of Declarative Concurrent Programs (II)

Specifically, we have seen that TR is initial model among all

Σ-transition systems satisfying the axioms of the given

rewrite theory R.

The question then becomes, which language shall we use to

express the properties ϕ that we want to prove hold in the

initial model TR? That is, how should we express relevant

properties ϕ such that,

TR |= ϕ.

The first, most obvious possibility is to use a first-order

language based on the signature Σ together with a family of

binary transition relations {→k}k∈K .

3

Verification of Declarative Concurrent Programs (IV)

We can consider a modal logic M(Σ) for Σ-transition

systems expressing necessity, ✷ϕ, and possibility, ✸ϕ

properties, which can be regarded as a sublanguage of such

a first-order language. We will focus on properties ✷I, with

I a predicate on states, stating that I is an invariant.

Not all properties of interest are expressible in M(Σ). For

example, properties involving fairness, and other properties

related to the infinite behavior of a system typically are not

expressible in M(Σ). They can be expressed in temporal

logic. The simplest choice is linear temporal logic (LTL).

Maude supports verification of LTL properties in its LTL

model checker. LTL and LTL model checking verification in

Maude are explained in Chapter 13 of All About Maude.

4

Invariants

Rather than developing in full detail the logic M(Σ), for the

moment we will focus on invariants. Invariants specify

safety properties, that is, properties guaranteeing that

nothing “bad” can happen or, equivalently, that the system

will always be in a “good” state. Given a rewrite theory R,

a chosen kind k of states, and an equationally-defined

Boolean predicate I on states of kind k, we say that I is an

invariant for TR from an initial state [t], written

TR, [t] |= ✷I

if and only if TR satisfies the following first-order formula:

(∀x : k) (t →∗ x) ⇒ I(x) = true.

5

Invariants (II)

This exactly means that: (i) I(t) = true, and (ii) I(x) = true

for any state x reachable from t. Intuitively, the predicate I

specifies some good property that our system must always

satisfy. The fact that we have TR, [t] |= ✷I means that our

system is I-safe, in the sense that the bad thing, namely ¬I,

will never happen in any state reachable from our initial

state [t].

For any Σ-transition system A = (A,→A) a kind k and an

element a ∈ Ak, we define the set of states reachable from a

by, ReachA(a) = {x ∈ Ak | a →∗
A x}. Similarly, given a Boolean

predicate I with arguments of kind k, we define the invariant

set defined by I in A as, JIKA = {x ∈ Ak|IA(x) = trueA}.

6

Invariants (III)

Therefore, we have the equivalence,

TR, [t] |= ✷I ⇔ ReachTR
([t]) ⊆ JIKTR

More generally, given any Σ-transition system A = (A,→A),

the invariant satisfaction relation A, a |= ✷I can likewise be

characterized by the equivalence:

A, a |= ✷I ⇔ ReachA(a) ⊆ JIKA.

In other words, the predicate I carves out a subset JIKA of

“good” states. Satisfying the invariant I just means that

the set ReachA(a) of reachable states is always inside the

I-safety envelope JIKA. An interesting question is how to

verify such invariants.

7

Model Checking Invariants through Search

Suppose that we have specified a rewrite theory R in

Maude as a system module, and that, for k a chosen kind of

states with, say, init the chosen initial state, R contains

also a Boolean predicate I that we want to check it is an

invariant, that is, that

TR, init |= ✷I

How can we do this in an automatic way? The key
observaton is that I holds if and only if the search command

search init =>* x:k such that I(x:k) =/= true .

has no solutions. Indeed, having no solutions exactly means

that on init, and on all states reachable from it, the

predicate I evaluates to true, that is, that I is an invariant.

8

Model Checking Invariants through Search (II)

Consider a simple clock that marks the hours of the day.
Such a clock can be specified by the system module

mod CLOCK is

protecting INT .

sort Clock .

op clock : Int -> Clock [ctor] .

var T : Int .

rl [tick] : clock(T) => clock((T + 1) rem 24) .

endm

Let clock(0) be the initial state. Note that, in principle, the

clock could be in an infinite number of states, such as

clock(7633157) or clock(-33457129). The point, however, is

that if the initial state is clock(0), then only states clock(T)

with times T such that 0 <= T < 24 can be reached.

9

Model Checking Invariants through Search (III)

This suggests making the predicate 0 <= T < 24 an

invariant of our clock system.

Since using simple linear arithmetic reasoning we can

express the negation of such an invariant as the predicate

(T < 0) or (T >= 24), we can automatically verify that our

simple clock satisfies the invariant by giving the command:

Maude> search in CLOCK : clock(0) =>* clock(T)

such that T < 0 or T >= 24 = true .

No solution.

states: 24 rewrites: 216 in 0ms cpu (2ms real) (~ rews/sec)

10

Model Checking Invariants through Search (IV)

We call this process of automatically checking an invariant

through search model checking, since we are cheching if our

model, namely the initial model TR together with a chosen

initial state satisfies a given invariant I.

If, as in the clock example, the number of states reachable

from the initial state is finite, then search provides a

decision procedure for the satisfaction of invariants: in finite

time Maude will either find no solutions to a search for

states violating the invariant, or will find an

invariant-violating state together with a sequence of rewrites

from the initial state to it, that is, a counterexample.

11

Model Checking Invariants through Search (V)

But what if the number of states reachable from the initial

state is infinite? In such a case, if the invariant I is violated,

the search command will terminate in finite time yielding a

counterexample. Assuming that the rules in R have no

rewrites in their conditions, termination is guaranteed by

the breadth-first nature of the search.

A state violating the invariant is a reachable state: there is

a finite sequence of rewrites from the initial state to it.

Since we assume that there is a finite number of rules R,

and therefore a finite number of ways that each state can

be rewritten, even though the number of reachable states is

infinite, the number of states reachable from the initial

state by a sequence of rewites of length less than a given

bound is finite.

12

Model Checking Invariants through Search (VI)

This bounded subset is always explored in finite time by the

search command. This means that, for systems where the

set of reachable states is infinite, search becomes a

semi-decision procedure for detecting the violation of an

invariant. That is, if the invariant is violated, we are

guaranteed to get a counterexample; but, if it is not

violated, we will search forever, never finding it.

We can illustrate the semi-decision procedure nature of

search for the verification of invariant failures with a simple

infinite-state example of processes and resources. Processes

and resources have no identities or topology; also, the

number of processes and resources can grow dynamically in

an unbounded manner.

13

Model Checking Invariants through Search (VII)

mod PROCS-RESOURCES is

sorts State Resources Process .

subsort Process < State .

subsort Resources < State .

ops res null : -> Resources [ctor] .

op p : Resources -> Process [ctor] .

op __ : Resources Resources -> Resources

[ctor assoc comm id: null] .

op __ : State State -> State [ctor ditto] .

rl [acq1] : p(null) res => p(res) .

rl [acq2] : p(res) res => p(res res) .

rl [rel] : p(res res) => p(null) res res .

rl [dupl] : p(null) res => p(null) res p(null) res .

endm

14

Model Checking Invariants through Search (VIII)

The state is a soup (multiset) of processes and resources.

Each process needs to acquire two resources. Originally,

each process p contains the null state. But if a resource

res is available, it can acquire it (rule [acq1]). If a second

resource becomes available, it can also acquire it (rule

[acq2]).

After acquiring both resources and using them, the process

can release them (rule [rel]).

Furthermore, the number of processes and resources can

grow in an unbounded manner by the duplication of each

process-resource pair (rule [dupl]).

15

Model Checking Invariants through Search (IX)

One invariant we might like to verify about this system is

deadlock freedom from an initial state res p(null). There

are two ways to model check this property: one completely

straightforward, and another requiring some extra work.

The straightforward manner is to give the search command

Maude> search in PROCS-RESOURCES : res p(null) =>! X:State .

Solution 1 (state 1)

states: 3 rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

Solution 2 (state 5)

states: 9 rewrites: 9 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res)

16

Solution 3 (state 13)

states: 19 rewrites: 26 in 0ms cpu (3ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 34 rewrites: 56 in 0ms cpu (4ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 55 rewrites: 104 in 0ms cpu (23ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

......

Solution 20 (state 1649)

states: 1770 rewrites: 5640 in 20ms cpu (67ms real)

(282000 rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res)

......

17

Model Checking Invariants through Search (X)

Maude will indeed continue printing all the solutions it finds.

But since there is an infinite number of deadlock states, it

may be preferable to specify in advance a bound on the

number of solutions, giving, for example, a command like

the following, that looks for at most 5 solutions.

Maude> search [5] in PROCS-RESOURCES : res p(null) =>! X:State .

The nice thing about model checking deadlock freedom this

way is that there is no need to explicitly specify the

invariant as a Boolean predicate. This is because the

negation of the invariant is by definition the set of deadlock

states, which is what the search command with the =>!

qualification precisely looks for.

18

Model Checking Invariants through Search (XI)

But, if one wishes, one can, with a little more work,

perform an equivalent model checking of the same property

by using an explicit enabledness predicate, telling us that a

state can make a transition. Of course, this cannot be done

in the original module, because such a predicate has not

been defined, but this is easy enough to do:

mod PROCS-RESOURCES-ENABLED is

protecting PROCS-RESOURCES .

op enabled : State -> Bool .

eq enabled(p(null) res X:State) = true .

eq enabled(p(res) res X:State) = true .

eq enabled(p(res res) X:State) = true .

eq enabled(X:State) = false [owise] .

endm

19

Model Checking Invariants through Search (XII)

One can then give the command

Maude> search [5] in PROCS-RESOURCES-ENABLED : res p(null)

=>* X:State such that enabled(X:State) =/= true .

getting the following 5 solutions:

Solution 1 (state 1)

states: 2 rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

Solution 2 (state 5)

states: 6 rewrites: 15 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res) p(res)

Solution 3 (state 13)

20

states: 14 rewrites: 41 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 26 rewrites: 87 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 44 rewrites: 160 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

21

Bounded Model Checking of Invariants

Although search can be a quite effective model checking

technique for invariants, it has some limitations:

• if the set of reachable states is infinite and the invariant

is satisfied, the search process never terminates;

• even if the number of reachable states is finite, it may

be too large to be explored in reasonable time and

space, due to time and memory limitations.

In such cases we have several alternatives. The most

obvious is to give up on completeness and settle for

searching states only up to a bound on the depth of paths

reaching them. Another alternative is to use an equational

abstraction (see §12.4 of All About Maude) to make the set

of reachable states finite.

22

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used

formal analysis method. It cannot guarantee that an

invariant holds everywhere, but it can either: (i) find very

useful and subtle counterexamples; or (ii) guarantee that up

to a certain depth the invariant holds.

Bounded model checking of invariants is supported in

Maude by means of the bounded search command.

Consider the following specification of a readers-writers

system.

23

Bounded Model Checking of Invariants (III)

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the

number R of readers and the number W of writers accessing a

critical resource. Readers and writers can leave the resource

at any time, but writers can only gain access to it if nobody

else is using it, and readers only if there are no writers.

24

Bounded Model Checking of Invariants (IV)

With initial state < 0, 0 > want to verify three invariants:

• mutual exclusion: readers and writers never access the

resource simultaneously: only readers or only writers

can do so at any given time.

• one writer: at most one writer will be able to access

the resource at any given time.

• deadlock freedom: there are no deadlocks.

We can try to model check these three invariants. In this

example the invariants themselves can be expressed in two

different ways: (i) implicitly, by giving a pattern

characterizing their negation; or (ii) explicitly by defining

appropriate state predicates.

25

Bounded Model Checking of Invariants (V)

The implicit method is the easiest:

Maude> search < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

Maude> search < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

Maude> search < 0,0 > =>! C:Config .

The negations of each of the first two invariants do not

need to be given explicitly: they can be described by the

patterns we search for. The negation of the first invariant

corresponds to the simultaneous presence of readers and

writers, which is exactly captured by the pattern

< s(N:Nat), s(M:Nat) >; whereas the negation of the fact

that at most one writer should be present at any given time

is exactly captured by the pattern < N:Nat, s(s(M:Nat)) >.

For deadlock-freedom the pattern is trivial: C:Config.

26

Bounded Model Checking of Invariants (V)

Since the number or readers is unbounded, the set of

reachable states is infinite and the search commands never

terminate. We can perform bounded model checking of

these three invariants by giving a 106 depth bound:

Maude> search [1, 1000000] < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)

Maude> search [1, 1000000] < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)

Maude> search [1, 1000000] < 0,0 > =>! C:Config .

No solution.

states: 1000003 rewrites: 2000002 in 5752ms cpu (5821ms real)

27

Bounded Model Checking of Invariants (VI)

The second method is to explicitly define our invariants by

means of state predicates. This is also easy to do:

mod R&W-PREDS is

protecting R&W .

ops mutex one-writer enabled : Config -> Bool .

eq mutex(< s(N:Nat),s(M:Nat) >) = false .

eq mutex(< 0,N:Nat >) = true .

eq mutex(< N:Nat,0 >) = true .

eq one-writer(< N:Nat,s(s(M:Nat)) >) = false .

eq one-writer(< N:Nat,0 >) = true .

eq one-writer(< N:Nat,s(0) >) = true .

eq enabled(< 0, 0 >) = true .

eq enabled(< R:Nat, s(W:Nat) >) = true .

eq enabled(< R:Nat, 0 >) = true .

eq enabled(< s(R:Nat), W:Nat >) = true .

eq enabled(< N:Nat, M:Nat >) = false [owise] .

endm

28

Bounded Model Checking of Invariants (VII)

search [1, 1000000] < 0,0 > =>* C:Config s.t. mutex(C:Config) = false .

No solution.

states: 1000002 rewrites: 3000003 in 7935ms cpu (8027ms real)

search [1, 1000000] < 0,0 > =>* C:Config s.t. one-writer(C:Config) =

false .

No solution.

states: 1000002 rewrites: 3000003 in 7662ms cpu (7720ms real)

search [1, 1000000] < 0,0 > =>* C:Config s.t. enabled(C:Config) =

false .

No solution.

states: 1000002 rewrites: 3000003 in 11516ms cpu (13303ms real)

29

